Loading…
Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production
Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with c...
Saved in:
Published in: | Nature energy 2019-03, Vol.4 (3), p.230-240 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13 |
container_end_page | 240 |
container_issue | 3 |
container_start_page | 230 |
container_title | Nature energy |
container_volume | 4 |
creator | Duan, Chuancheng Kee, Robert Zhu, Huayang Sullivan, Neal Zhu, Liangzhu Bian, Liuzhen Jennings, Dylan O’Hayre, Ryan |
description | Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with cost, durability, low round-trip efficiency and the need to separate H
2
O from the product fuel. Here, we present a reversible protonic ceramic electrochemical cell based on an yttrium and ytterbium co-doped barium cerate–zirconate electrolyte and a triple-conducting oxide air/steam (reversible) electrode that addresses many of these issues. Our reversible protonic ceramic electrochemical cell achieves a high Faradaic efficiency (90–98%) and can operate endothermically with a >97% overall electric-to-hydrogen energy conversion efficiency (based on the lower heating value of H
2
) at a current density of −1,000 mA cm
−2
. Even higher efficiencies are obtained for H
2
O electrolysis with co-fed CO
2
to produce CO and CH
4
. We demonstrate a repeatable round-trip (electricity-to-hydrogen-to-electricity) efficiency of >75% and stable operation, with a degradation rate of |
doi_str_mv | 10.1038/s41560-019-0333-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190996280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190996280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJPJKlFLVCwY2uQyZz005NZ2oyo_TvTRlBN67OvYfzgEPINYNbBkLexZwVJWTAVAZCiIyfkRmHQmZVkZfnf-5LsohxBwBccV5INiPvq3az9UeKzrW2xW6gAT8xxLb2SA-hH_qutdRiMPuE6NEOobdbTJ_xifc-UtcHeui_MNANdkk5tH1HTddQN6I_hTSjPXFX5MIZH3Hxg3Py9vjwulxl65en5-X9OrM5qCFjzlhhJdYcUFm0TChha94IVlZGVKWUqqlz6WTTGMMaZLkwrnI51HnFoGZiTm6m3FT9MWIc9K4fQ5cqNWcKlCq5hKRik8qGPsaATh9CuzfhqBno06x6mlWnWfVpVs2Th0-emLTdBsNv8v-mb3EyfMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190996280</pqid></control><display><type>article</type><title>Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production</title><source>Alma/SFX Local Collection</source><creator>Duan, Chuancheng ; Kee, Robert ; Zhu, Huayang ; Sullivan, Neal ; Zhu, Liangzhu ; Bian, Liuzhen ; Jennings, Dylan ; O’Hayre, Ryan</creator><creatorcontrib>Duan, Chuancheng ; Kee, Robert ; Zhu, Huayang ; Sullivan, Neal ; Zhu, Liangzhu ; Bian, Liuzhen ; Jennings, Dylan ; O’Hayre, Ryan</creatorcontrib><description>Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with cost, durability, low round-trip efficiency and the need to separate H
2
O from the product fuel. Here, we present a reversible protonic ceramic electrochemical cell based on an yttrium and ytterbium co-doped barium cerate–zirconate electrolyte and a triple-conducting oxide air/steam (reversible) electrode that addresses many of these issues. Our reversible protonic ceramic electrochemical cell achieves a high Faradaic efficiency (90–98%) and can operate endothermically with a >97% overall electric-to-hydrogen energy conversion efficiency (based on the lower heating value of H
2
) at a current density of −1,000 mA cm
−2
. Even higher efficiencies are obtained for H
2
O electrolysis with co-fed CO
2
to produce CO and CH
4
. We demonstrate a repeatable round-trip (electricity-to-hydrogen-to-electricity) efficiency of >75% and stable operation, with a degradation rate of <30 mV over 1,000 h.
Reversible electrochemical cells can operate in both fuel cell and electrolysis modes to interconvert between chemical and electrical energy. Here, Duan et al. design a reversible protonic ceramic electrochemical cell that operates stably at 500–600 °C, with high Faradaic and round-trip efficiencies, by minimizing electronic leakage.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-019-0333-2</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/886 ; 639/301/299/893 ; 639/4077/909/4086/4087 ; Barium ; Calorific value ; Carbon dioxide ; Ceramics ; Economics and Management ; Efficiency ; Electricity ; Electrochemical cells ; Electrochemistry ; Electrolysis ; Electrolytic cells ; Energy ; Energy conversion ; Energy conversion efficiency ; Energy Policy ; Energy Storage ; Energy Systems ; Fuel cells ; Fuel production ; Fuel technology ; Product development ; Proton exchange membrane fuel cells ; Renewable and Green Energy ; Renewable fuels ; Solid oxide fuel cells ; Ytterbium ; Yttrium</subject><ispartof>Nature energy, 2019-03, Vol.4 (3), p.230-240</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13</citedby><cites>FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13</cites><orcidid>0000-0003-3762-3052 ; 0000-0002-1826-1415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Duan, Chuancheng</creatorcontrib><creatorcontrib>Kee, Robert</creatorcontrib><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Sullivan, Neal</creatorcontrib><creatorcontrib>Zhu, Liangzhu</creatorcontrib><creatorcontrib>Bian, Liuzhen</creatorcontrib><creatorcontrib>Jennings, Dylan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><title>Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with cost, durability, low round-trip efficiency and the need to separate H
2
O from the product fuel. Here, we present a reversible protonic ceramic electrochemical cell based on an yttrium and ytterbium co-doped barium cerate–zirconate electrolyte and a triple-conducting oxide air/steam (reversible) electrode that addresses many of these issues. Our reversible protonic ceramic electrochemical cell achieves a high Faradaic efficiency (90–98%) and can operate endothermically with a >97% overall electric-to-hydrogen energy conversion efficiency (based on the lower heating value of H
2
) at a current density of −1,000 mA cm
−2
. Even higher efficiencies are obtained for H
2
O electrolysis with co-fed CO
2
to produce CO and CH
4
. We demonstrate a repeatable round-trip (electricity-to-hydrogen-to-electricity) efficiency of >75% and stable operation, with a degradation rate of <30 mV over 1,000 h.
Reversible electrochemical cells can operate in both fuel cell and electrolysis modes to interconvert between chemical and electrical energy. Here, Duan et al. design a reversible protonic ceramic electrochemical cell that operates stably at 500–600 °C, with high Faradaic and round-trip efficiencies, by minimizing electronic leakage.</description><subject>639/301/299/886</subject><subject>639/301/299/893</subject><subject>639/4077/909/4086/4087</subject><subject>Barium</subject><subject>Calorific value</subject><subject>Carbon dioxide</subject><subject>Ceramics</subject><subject>Economics and Management</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Fuel cells</subject><subject>Fuel production</subject><subject>Fuel technology</subject><subject>Product development</subject><subject>Proton exchange membrane fuel cells</subject><subject>Renewable and Green Energy</subject><subject>Renewable fuels</subject><subject>Solid oxide fuel cells</subject><subject>Ytterbium</subject><subject>Yttrium</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgqf0AdwHXozfJPJKlFLVCwY2uQyZz005NZ2oyo_TvTRlBN67OvYfzgEPINYNbBkLexZwVJWTAVAZCiIyfkRmHQmZVkZfnf-5LsohxBwBccV5INiPvq3az9UeKzrW2xW6gAT8xxLb2SA-hH_qutdRiMPuE6NEOobdbTJ_xifc-UtcHeui_MNANdkk5tH1HTddQN6I_hTSjPXFX5MIZH3Hxg3Py9vjwulxl65en5-X9OrM5qCFjzlhhJdYcUFm0TChha94IVlZGVKWUqqlz6WTTGMMaZLkwrnI51HnFoGZiTm6m3FT9MWIc9K4fQ5cqNWcKlCq5hKRik8qGPsaATh9CuzfhqBno06x6mlWnWfVpVs2Th0-emLTdBsNv8v-mb3EyfMw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Duan, Chuancheng</creator><creator>Kee, Robert</creator><creator>Zhu, Huayang</creator><creator>Sullivan, Neal</creator><creator>Zhu, Liangzhu</creator><creator>Bian, Liuzhen</creator><creator>Jennings, Dylan</creator><creator>O’Hayre, Ryan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000-0002-1826-1415</orcidid></search><sort><creationdate>20190301</creationdate><title>Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production</title><author>Duan, Chuancheng ; Kee, Robert ; Zhu, Huayang ; Sullivan, Neal ; Zhu, Liangzhu ; Bian, Liuzhen ; Jennings, Dylan ; O’Hayre, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/299/886</topic><topic>639/301/299/893</topic><topic>639/4077/909/4086/4087</topic><topic>Barium</topic><topic>Calorific value</topic><topic>Carbon dioxide</topic><topic>Ceramics</topic><topic>Economics and Management</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Fuel cells</topic><topic>Fuel production</topic><topic>Fuel technology</topic><topic>Product development</topic><topic>Proton exchange membrane fuel cells</topic><topic>Renewable and Green Energy</topic><topic>Renewable fuels</topic><topic>Solid oxide fuel cells</topic><topic>Ytterbium</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Chuancheng</creatorcontrib><creatorcontrib>Kee, Robert</creatorcontrib><creatorcontrib>Zhu, Huayang</creatorcontrib><creatorcontrib>Sullivan, Neal</creatorcontrib><creatorcontrib>Zhu, Liangzhu</creatorcontrib><creatorcontrib>Bian, Liuzhen</creatorcontrib><creatorcontrib>Jennings, Dylan</creatorcontrib><creatorcontrib>O’Hayre, Ryan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Chuancheng</au><au>Kee, Robert</au><au>Zhu, Huayang</au><au>Sullivan, Neal</au><au>Zhu, Liangzhu</au><au>Bian, Liuzhen</au><au>Jennings, Dylan</au><au>O’Hayre, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>4</volume><issue>3</issue><spage>230</spage><epage>240</epage><pages>230-240</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Reversible fuel cells based on both proton exchange membrane fuel cell and solid oxide fuel cell technologies have been proposed to address energy storage and conversion challenges and to provide versatile pathways for renewable fuels production. Both technologies suffer challenges associated with cost, durability, low round-trip efficiency and the need to separate H
2
O from the product fuel. Here, we present a reversible protonic ceramic electrochemical cell based on an yttrium and ytterbium co-doped barium cerate–zirconate electrolyte and a triple-conducting oxide air/steam (reversible) electrode that addresses many of these issues. Our reversible protonic ceramic electrochemical cell achieves a high Faradaic efficiency (90–98%) and can operate endothermically with a >97% overall electric-to-hydrogen energy conversion efficiency (based on the lower heating value of H
2
) at a current density of −1,000 mA cm
−2
. Even higher efficiencies are obtained for H
2
O electrolysis with co-fed CO
2
to produce CO and CH
4
. We demonstrate a repeatable round-trip (electricity-to-hydrogen-to-electricity) efficiency of >75% and stable operation, with a degradation rate of <30 mV over 1,000 h.
Reversible electrochemical cells can operate in both fuel cell and electrolysis modes to interconvert between chemical and electrical energy. Here, Duan et al. design a reversible protonic ceramic electrochemical cell that operates stably at 500–600 °C, with high Faradaic and round-trip efficiencies, by minimizing electronic leakage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-019-0333-2</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3762-3052</orcidid><orcidid>https://orcid.org/0000-0002-1826-1415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2019-03, Vol.4 (3), p.230-240 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2190996280 |
source | Alma/SFX Local Collection |
subjects | 639/301/299/886 639/301/299/893 639/4077/909/4086/4087 Barium Calorific value Carbon dioxide Ceramics Economics and Management Efficiency Electricity Electrochemical cells Electrochemistry Electrolysis Electrolytic cells Energy Energy conversion Energy conversion efficiency Energy Policy Energy Storage Energy Systems Fuel cells Fuel production Fuel technology Product development Proton exchange membrane fuel cells Renewable and Green Energy Renewable fuels Solid oxide fuel cells Ytterbium Yttrium |
title | Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20reversible%20protonic%20ceramic%20electrochemical%20cells%20for%20power%20generation%20and%20fuel%20production&rft.jtitle=Nature%20energy&rft.au=Duan,%20Chuancheng&rft.date=2019-03-01&rft.volume=4&rft.issue=3&rft.spage=230&rft.epage=240&rft.pages=230-240&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-019-0333-2&rft_dat=%3Cproquest_cross%3E2190996280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-1fac3c8eb20e9cec1393cb2d3167a376889db48f8ddaa1de143af7f40b4710b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190996280&rft_id=info:pmid/&rfr_iscdi=true |