Loading…
Design and Operational Strategy Research for Temperature Control Systems of Isothermal Compressed Air Energy Storage Power Plants
Energy storage technology is critical for intelligent power grids. It has great significance for the large-scale integration of new energy sources into the power grid and the transition of the energy structure. Based on the existing technology of isothermal compressed air energy storage, this paper...
Saved in:
Published in: | Journal of thermal science 2019-04, Vol.28 (2), p.204-217 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Energy storage technology is critical for intelligent power grids. It has great significance for the large-scale integration of new energy sources into the power grid and the transition of the energy structure. Based on the existing technology of isothermal compressed air energy storage, this paper presents a design scheme of isothermal compressed air energy storage power station, which uses liquid to compress air, hydraulic piston to transfer potential energy, hydraulic turbine to generate electricity at constant pressure, and liquid occupancy to store the gas at constant pressure. Then the technical features and control strategies of its internal temperature control subsystem are studied, and the mathematical model is constructed. A hierarchical relay operation is put forward to address the actual construction and operational requirements of compressed air energy storage power plants. Finally, through physical platform experiments and MATLAB simulation, the feasibility of the design is validated. |
---|---|
ISSN: | 1003-2169 1993-033X |
DOI: | 10.1007/s11630-019-1089-5 |