Loading…
Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping
Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally i...
Saved in:
Published in: | arXiv.org 2019-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chae, Sieun Lee, Jihang Mengle, Kelsey A Heron, John T Kioupakis, Emmanouil |
description | Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices. |
doi_str_mv | 10.48550/arxiv.1903.06041 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2191713427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191713427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3</originalsourceid><addsrcrecordid>eNotj81KAzEYAIMgWGofwFvAc9YkX7LJepNiq1AoSO_ly481ZbtZs7vWx7dgT3ObYQh5ELxSVmv-hOU3_VSi4VDxmitxQ2YSQDCrpLwji2E4cs5lbaTWMCOrj2lMbaTruJXPFDs6tWPBcwqROewCO2BPh3hKPndh8mMu9JzGL4onl_rcYqEh96k73JPbT2yHuLhyTnar193yjW226_fly4ahlobVtvHe2gDSczQRldYmBm9MQHBQO147xYWTHuRlJdgGG2tjCAA-8GAdzMnjv7Yv-XuKw7g_5ql0l-JeikYYAUoa-ANH1Ez0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191713427</pqid></control><display><type>article</type><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><source>Publicly Available Content Database</source><creator>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</creator><creatorcontrib>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</creatorcontrib><description>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.06041</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Compensation ; Conduction bands ; Density functional theory ; Donors (electronic) ; Doping ; Electronic devices ; Energy gap ; Germanium oxides ; Interstitials ; Ionization ; Ions ; Rutile ; Self-interstitials ; Semiconductor devices ; Ultrawideband</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2191713427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Chae, Sieun</creatorcontrib><creatorcontrib>Lee, Jihang</creatorcontrib><creatorcontrib>Mengle, Kelsey A</creatorcontrib><creatorcontrib>Heron, John T</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><title>arXiv.org</title><description>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</description><subject>Compensation</subject><subject>Conduction bands</subject><subject>Density functional theory</subject><subject>Donors (electronic)</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Germanium oxides</subject><subject>Interstitials</subject><subject>Ionization</subject><subject>Ions</subject><subject>Rutile</subject><subject>Self-interstitials</subject><subject>Semiconductor devices</subject><subject>Ultrawideband</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81KAzEYAIMgWGofwFvAc9YkX7LJepNiq1AoSO_ly481ZbtZs7vWx7dgT3ObYQh5ELxSVmv-hOU3_VSi4VDxmitxQ2YSQDCrpLwji2E4cs5lbaTWMCOrj2lMbaTruJXPFDs6tWPBcwqROewCO2BPh3hKPndh8mMu9JzGL4onl_rcYqEh96k73JPbT2yHuLhyTnar193yjW226_fly4ahlobVtvHe2gDSczQRldYmBm9MQHBQO147xYWTHuRlJdgGG2tjCAA-8GAdzMnjv7Yv-XuKw7g_5ql0l-JeikYYAUoa-ANH1Ez0</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Chae, Sieun</creator><creator>Lee, Jihang</creator><creator>Mengle, Kelsey A</creator><creator>Heron, John T</creator><creator>Kioupakis, Emmanouil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190314</creationdate><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><author>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compensation</topic><topic>Conduction bands</topic><topic>Density functional theory</topic><topic>Donors (electronic)</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Germanium oxides</topic><topic>Interstitials</topic><topic>Ionization</topic><topic>Ions</topic><topic>Rutile</topic><topic>Self-interstitials</topic><topic>Semiconductor devices</topic><topic>Ultrawideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Chae, Sieun</creatorcontrib><creatorcontrib>Lee, Jihang</creatorcontrib><creatorcontrib>Mengle, Kelsey A</creatorcontrib><creatorcontrib>Heron, John T</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Sieun</au><au>Lee, Jihang</au><au>Mengle, Kelsey A</au><au>Heron, John T</au><au>Kioupakis, Emmanouil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</atitle><jtitle>arXiv.org</jtitle><date>2019-03-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.06041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2191713427 |
source | Publicly Available Content Database |
subjects | Compensation Conduction bands Density functional theory Donors (electronic) Doping Electronic devices Energy gap Germanium oxides Interstitials Ionization Ions Rutile Self-interstitials Semiconductor devices Ultrawideband |
title | Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rutile%20GeO2:%20an%20ultrawide-band-gap%20semiconductor%20with%20ambipolar%20doping&rft.jtitle=arXiv.org&rft.au=Chae,%20Sieun&rft.date=2019-03-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.06041&rft_dat=%3Cproquest%3E2191713427%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191713427&rft_id=info:pmid/&rfr_iscdi=true |