Loading…

Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping

Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-03
Main Authors: Chae, Sieun, Lee, Jihang, Mengle, Kelsey A, Heron, John T, Kioupakis, Emmanouil
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chae, Sieun
Lee, Jihang
Mengle, Kelsey A
Heron, John T
Kioupakis, Emmanouil
description Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.
doi_str_mv 10.48550/arxiv.1903.06041
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2191713427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191713427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3</originalsourceid><addsrcrecordid>eNotj81KAzEYAIMgWGofwFvAc9YkX7LJepNiq1AoSO_ly481ZbtZs7vWx7dgT3ObYQh5ELxSVmv-hOU3_VSi4VDxmitxQ2YSQDCrpLwji2E4cs5lbaTWMCOrj2lMbaTruJXPFDs6tWPBcwqROewCO2BPh3hKPndh8mMu9JzGL4onl_rcYqEh96k73JPbT2yHuLhyTnar193yjW226_fly4ahlobVtvHe2gDSczQRldYmBm9MQHBQO147xYWTHuRlJdgGG2tjCAA-8GAdzMnjv7Yv-XuKw7g_5ql0l-JeikYYAUoa-ANH1Ez0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191713427</pqid></control><display><type>article</type><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><source>Publicly Available Content Database</source><creator>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</creator><creatorcontrib>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</creatorcontrib><description>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.06041</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Compensation ; Conduction bands ; Density functional theory ; Donors (electronic) ; Doping ; Electronic devices ; Energy gap ; Germanium oxides ; Interstitials ; Ionization ; Ions ; Rutile ; Self-interstitials ; Semiconductor devices ; Ultrawideband</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2191713427?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Chae, Sieun</creatorcontrib><creatorcontrib>Lee, Jihang</creatorcontrib><creatorcontrib>Mengle, Kelsey A</creatorcontrib><creatorcontrib>Heron, John T</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><title>arXiv.org</title><description>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</description><subject>Compensation</subject><subject>Conduction bands</subject><subject>Density functional theory</subject><subject>Donors (electronic)</subject><subject>Doping</subject><subject>Electronic devices</subject><subject>Energy gap</subject><subject>Germanium oxides</subject><subject>Interstitials</subject><subject>Ionization</subject><subject>Ions</subject><subject>Rutile</subject><subject>Self-interstitials</subject><subject>Semiconductor devices</subject><subject>Ultrawideband</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81KAzEYAIMgWGofwFvAc9YkX7LJepNiq1AoSO_ly481ZbtZs7vWx7dgT3ObYQh5ELxSVmv-hOU3_VSi4VDxmitxQ2YSQDCrpLwji2E4cs5lbaTWMCOrj2lMbaTruJXPFDs6tWPBcwqROewCO2BPh3hKPndh8mMu9JzGL4onl_rcYqEh96k73JPbT2yHuLhyTnar193yjW226_fly4ahlobVtvHe2gDSczQRldYmBm9MQHBQO147xYWTHuRlJdgGG2tjCAA-8GAdzMnjv7Yv-XuKw7g_5ql0l-JeikYYAUoa-ANH1Ez0</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Chae, Sieun</creator><creator>Lee, Jihang</creator><creator>Mengle, Kelsey A</creator><creator>Heron, John T</creator><creator>Kioupakis, Emmanouil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190314</creationdate><title>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</title><author>Chae, Sieun ; Lee, Jihang ; Mengle, Kelsey A ; Heron, John T ; Kioupakis, Emmanouil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Compensation</topic><topic>Conduction bands</topic><topic>Density functional theory</topic><topic>Donors (electronic)</topic><topic>Doping</topic><topic>Electronic devices</topic><topic>Energy gap</topic><topic>Germanium oxides</topic><topic>Interstitials</topic><topic>Ionization</topic><topic>Ions</topic><topic>Rutile</topic><topic>Self-interstitials</topic><topic>Semiconductor devices</topic><topic>Ultrawideband</topic><toplevel>online_resources</toplevel><creatorcontrib>Chae, Sieun</creatorcontrib><creatorcontrib>Lee, Jihang</creatorcontrib><creatorcontrib>Mengle, Kelsey A</creatorcontrib><creatorcontrib>Heron, John T</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chae, Sieun</au><au>Lee, Jihang</au><au>Mengle, Kelsey A</au><au>Heron, John T</au><au>Kioupakis, Emmanouil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping</atitle><jtitle>arXiv.org</jtitle><date>2019-03-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Ultra-wide-band-gap (UWBG) semiconductors have tremendous potential to advance electronic devices as device performance improves superlinearly with increasing gap. Ambipolar doping, however, has been a major challenge for UWBG materials as dopant ionization energy and charge compensation generally increase with increasing band gap and significantly limit the semiconductor devices that can currently be realized. Using hybrid density functional theory, we demonstrate rutile germanium oxide (r-GeO2) to be an alternative UWBG (4.68 eV) material that can be ambipolarly doped. We identify SbGe, AsGe, and FO as possible donors with low ionization energies and propose growth conditions to avoid charge compensation by deep acceptors such as VGe and NO. On the other hand, acceptors such as AlGe have relatively large ionization energies (0.45 eV) due to the formation of localized hole polarons and are likely to be passivated by VO, Gei, and self-interstitials. Yet, we find that the co-incorporation of AlGe with interstitial H can increase the solubility limit of Al and enable hole conduction in the impurity band. Our results show that r-GeO2 is a promising UWBG semiconductor that can overcome current doping challenges and enable the next generation of power electronics devices.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.06041</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2191713427
source Publicly Available Content Database
subjects Compensation
Conduction bands
Density functional theory
Donors (electronic)
Doping
Electronic devices
Energy gap
Germanium oxides
Interstitials
Ionization
Ions
Rutile
Self-interstitials
Semiconductor devices
Ultrawideband
title Rutile GeO2: an ultrawide-band-gap semiconductor with ambipolar doping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rutile%20GeO2:%20an%20ultrawide-band-gap%20semiconductor%20with%20ambipolar%20doping&rft.jtitle=arXiv.org&rft.au=Chae,%20Sieun&rft.date=2019-03-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.06041&rft_dat=%3Cproquest%3E2191713427%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-689cc88d32c0a7ea4557edc77da3b36b06b401b2c32855d89a988edd33cd0d8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2191713427&rft_id=info:pmid/&rfr_iscdi=true