Loading…

Cellulose nanocrystals in aqueous suspensions: rheology of lyotropic chiral liquid crystals

A thorough rheological study of the behavior of cellulose nanocrystals (CNC) in water was undertaken, focusing on the main characteristics of rod-like suspensions that allign under flow and can display liquid crystal behavior at rest, in at least a range of concentrations. The effect of adding a dis...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2019-03, Vol.26 (4), p.2317-2332
Main Authors: Buffa, Juan M., Casado, Ulises, Mucci, VerĂ³nica, Aranguren, Mirta I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A thorough rheological study of the behavior of cellulose nanocrystals (CNC) in water was undertaken, focusing on the main characteristics of rod-like suspensions that allign under flow and can display liquid crystal behavior at rest, in at least a range of concentrations. The effect of adding a dispersing agent (gum arabic, GA) to the suspension was analyzed, and different surface treatments were also performed on the CNC using TEMPO, chloro(dodecyl)dimethylsilane and trimethoxysilyl propylmethacrylate, named as TCNC, DCNC and MCNC respectively. The CNC, TCNC and the suspensions prepared with added GA formed stable suspensions with a concentration range in which isotropic and anisotropic (self-organized) phases coexisted in equilibrium. On the other hand, the aqueous suspensions of the two silanized CNCs only displayed flow-induced ordering, with a similar type of rheological behavior to the other nanocrystal suspensions, although with obvious quantitative differences. These latter ones were not stable suspensions and precipitated after a few hours of rest. The rheological tests included steady shear, dynamic oscillations and start-up of steady shear that were performed for all the nanocrystals suspensions prepared at different concentrations. Differences observed were related to the crystals surface modifications or addition of the dispersing agent. A persistent periodic oscillation of the viscosity was measured in the start-up of steady shear tests and the periods of the oscillations were determined and related to the different types of crystals considered. Graphical abstract
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-019-02278-3