Loading…
Analytic regularity of a free boundary problem
In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n - 8. [PUBLICATION ABSTRACT]
Saved in:
Published in: | Calculus of variations and partial differential equations 2007-01, Vol.28 (1), p.1-14 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303 |
---|---|
cites | cdi_FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 28 |
creator | Jiang, Huiqiang |
description | In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n - 8. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00526-006-0028-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219202534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1192545531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303</originalsourceid><addsrcrecordid>eNotkE1LxDAYhIMoWFd_gLfgPeub7-S4LH7Bghc9h7RNpEt3uybtof_elHoY5jLMDA9CjxS2FEA_ZwDJFAFYxAyZr1BFBWcEDJfXqAIrBGFK2Vt0l_MRgErDRIW2u7Pv57FrcAo_U-9TN854iNjjmELA9TCdW59mfElD3YfTPbqJvs_h4d836Pv15Wv_Tg6fbx_73YE0DNhIaGRNoMqD5ToIFkXUXihv6mhN24CUrbZaxlhbBUwaLRX4GLj00YggOPANelp7y-7vFPLojsOUytXsGLVlQ3JRQnQNNWnIOYXoLqk7lbeOgluouJWKK1TcQsXN_A-o4FQJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219202534</pqid></control><display><type>article</type><title>Analytic regularity of a free boundary problem</title><source>Springer Nature</source><creator>Jiang, Huiqiang</creator><creatorcontrib>Jiang, Huiqiang</creatorcontrib><description>In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n - 8. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-006-0028-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Analysis ; Boundary layer ; Calculus of variations ; Mathematics</subject><ispartof>Calculus of variations and partial differential equations, 2007-01, Vol.28 (1), p.1-14</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303</citedby><cites>FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Jiang, Huiqiang</creatorcontrib><title>Analytic regularity of a free boundary problem</title><title>Calculus of variations and partial differential equations</title><description>In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n - 8. [PUBLICATION ABSTRACT]</description><subject>Analysis</subject><subject>Boundary layer</subject><subject>Calculus of variations</subject><subject>Mathematics</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAYhIMoWFd_gLfgPeub7-S4LH7Bghc9h7RNpEt3uybtof_elHoY5jLMDA9CjxS2FEA_ZwDJFAFYxAyZr1BFBWcEDJfXqAIrBGFK2Vt0l_MRgErDRIW2u7Pv57FrcAo_U-9TN854iNjjmELA9TCdW59mfElD3YfTPbqJvs_h4d836Pv15Wv_Tg6fbx_73YE0DNhIaGRNoMqD5ToIFkXUXihv6mhN24CUrbZaxlhbBUwaLRX4GLj00YggOPANelp7y-7vFPLojsOUytXsGLVlQ3JRQnQNNWnIOYXoLqk7lbeOgluouJWKK1TcQsXN_A-o4FQJ</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>Jiang, Huiqiang</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20070101</creationdate><title>Analytic regularity of a free boundary problem</title><author>Jiang, Huiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analysis</topic><topic>Boundary layer</topic><topic>Calculus of variations</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Huiqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Huiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic regularity of a free boundary problem</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>28</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper, we consider a free boundary problem with volume constraint. We show that positive minimizer is locally Lipschitz and the free boundary is analytic away from a singular set with Hausdorff dimension at most n - 8. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00526-006-0028-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2007-01, Vol.28 (1), p.1-14 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_219202534 |
source | Springer Nature |
subjects | Analysis Boundary layer Calculus of variations Mathematics |
title | Analytic regularity of a free boundary problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20regularity%20of%20a%20free%20boundary%20problem&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Jiang,%20Huiqiang&rft.date=2007-01-01&rft.volume=28&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-006-0028-y&rft_dat=%3Cproquest_cross%3E1192545531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c202t-1f2ce16a0937e42f4f7a46a8bf98dc055d7975ffb9602587560afe35af84e4303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219202534&rft_id=info:pmid/&rfr_iscdi=true |