Loading…

The monopolist’s problem: existence, relaxation, and approximation

We study a variational problem arising from a generalization of an economic model introduced by Rochet and Chone in [5]. In this model a monopolist proposes a set Y of products withprice list p : Y R. Each rational consumer chooses which product to buy by solving a personal minimum problem, taking i...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2005-09, Vol.24 (1), p.111-129
Main Authors: Ghisi, Marina, Gobbino, Massimo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83
cites cdi_FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83
container_end_page 129
container_issue 1
container_start_page 111
container_title Calculus of variations and partial differential equations
container_volume 24
creator Ghisi, Marina
Gobbino, Massimo
description We study a variational problem arising from a generalization of an economic model introduced by Rochet and Chone in [5]. In this model a monopolist proposes a set Y of products withprice list p : Y R. Each rational consumer chooses which product to buy by solving a personal minimum problem, taking into account his/her tastes and economic possibilities. The monopolist looks for the optimal price list which minimizes costs, hence maximizes the prot. This leads to a minimum problem for functionals F(p) (the pessimistic cost expectation) and G(p) (the optimistic cost expectation), which are in turn dened through two nested variational problems. We prove that the minimum of G exists and coincides with the inmum of F. We also provide a variational approximation of G112 M. Ghisi, M. Gobbino. Finally, for every p P one denes F(p):= X Mp(x)d, G(p):= X mp(x)d. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00526-004-0317-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219268574</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>871185051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqVwAHYR6xrGYztx2KHyK1ViU9aWk0xEqzQOdiqVHdfgepwEl7Kamaen90YfY5cCrgVAcRMBNOYcQHGQouB4xCZCSeRgpD5mEyiV4pjn5Sk7i3ENILRBNWH3y3fKNr73g-9Wcfz5-o7ZEHzV0eY2o12SqK9plgXq3M6NK9_PMtc3mRuSa7fa_Enn7KR1XaSL_zllb48Py_kzX7w-vczvFrzGAkdeVYXShpR2jTEtuLKUhZKqSbtusVGuFdA4THdDVWGIcukAoM6hclhWRk7Z1SE3dX9sKY527behT5UWRYm50SlvysTBVAcfY6DWDiH9GT6tALtnZQ-sbGJl96wsyl_5xV3G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219268574</pqid></control><display><type>article</type><title>The monopolist’s problem: existence, relaxation, and approximation</title><source>Springer Link</source><creator>Ghisi, Marina ; Gobbino, Massimo</creator><creatorcontrib>Ghisi, Marina ; Gobbino, Massimo</creatorcontrib><description>We study a variational problem arising from a generalization of an economic model introduced by Rochet and Chone in [5]. In this model a monopolist proposes a set Y of products withprice list p : Y R. Each rational consumer chooses which product to buy by solving a personal minimum problem, taking into account his/her tastes and economic possibilities. The monopolist looks for the optimal price list which minimizes costs, hence maximizes the prot. This leads to a minimum problem for functionals F(p) (the pessimistic cost expectation) and G(p) (the optimistic cost expectation), which are in turn dened through two nested variational problems. We prove that the minimum of G exists and coincides with the inmum of F. We also provide a variational approximation of G112 M. Ghisi, M. Gobbino. Finally, for every p P one denes F(p):= X Mp(x)d, G(p):= X mp(x)d. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-004-0317-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Calculus ; Calculus of variations ; Economic models ; Monopolies</subject><ispartof>Calculus of variations and partial differential equations, 2005-09, Vol.24 (1), p.111-129</ispartof><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83</citedby><cites>FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghisi, Marina</creatorcontrib><creatorcontrib>Gobbino, Massimo</creatorcontrib><title>The monopolist’s problem: existence, relaxation, and approximation</title><title>Calculus of variations and partial differential equations</title><description>We study a variational problem arising from a generalization of an economic model introduced by Rochet and Chone in [5]. In this model a monopolist proposes a set Y of products withprice list p : Y R. Each rational consumer chooses which product to buy by solving a personal minimum problem, taking into account his/her tastes and economic possibilities. The monopolist looks for the optimal price list which minimizes costs, hence maximizes the prot. This leads to a minimum problem for functionals F(p) (the pessimistic cost expectation) and G(p) (the optimistic cost expectation), which are in turn dened through two nested variational problems. We prove that the minimum of G exists and coincides with the inmum of F. We also provide a variational approximation of G112 M. Ghisi, M. Gobbino. Finally, for every p P one denes F(p):= X Mp(x)d, G(p):= X mp(x)d. [PUBLICATION ABSTRACT]</description><subject>Calculus</subject><subject>Calculus of variations</subject><subject>Economic models</subject><subject>Monopolies</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqVwAHYR6xrGYztx2KHyK1ViU9aWk0xEqzQOdiqVHdfgepwEl7Kamaen90YfY5cCrgVAcRMBNOYcQHGQouB4xCZCSeRgpD5mEyiV4pjn5Sk7i3ENILRBNWH3y3fKNr73g-9Wcfz5-o7ZEHzV0eY2o12SqK9plgXq3M6NK9_PMtc3mRuSa7fa_Enn7KR1XaSL_zllb48Py_kzX7w-vczvFrzGAkdeVYXShpR2jTEtuLKUhZKqSbtusVGuFdA4THdDVWGIcukAoM6hclhWRk7Z1SE3dX9sKY527behT5UWRYm50SlvysTBVAcfY6DWDiH9GT6tALtnZQ-sbGJl96wsyl_5xV3G</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Ghisi, Marina</creator><creator>Gobbino, Massimo</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>200509</creationdate><title>The monopolist’s problem: existence, relaxation, and approximation</title><author>Ghisi, Marina ; Gobbino, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Calculus</topic><topic>Calculus of variations</topic><topic>Economic models</topic><topic>Monopolies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghisi, Marina</creatorcontrib><creatorcontrib>Gobbino, Massimo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghisi, Marina</au><au>Gobbino, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The monopolist’s problem: existence, relaxation, and approximation</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><date>2005-09</date><risdate>2005</risdate><volume>24</volume><issue>1</issue><spage>111</spage><epage>129</epage><pages>111-129</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We study a variational problem arising from a generalization of an economic model introduced by Rochet and Chone in [5]. In this model a monopolist proposes a set Y of products withprice list p : Y R. Each rational consumer chooses which product to buy by solving a personal minimum problem, taking into account his/her tastes and economic possibilities. The monopolist looks for the optimal price list which minimizes costs, hence maximizes the prot. This leads to a minimum problem for functionals F(p) (the pessimistic cost expectation) and G(p) (the optimistic cost expectation), which are in turn dened through two nested variational problems. We prove that the minimum of G exists and coincides with the inmum of F. We also provide a variational approximation of G112 M. Ghisi, M. Gobbino. Finally, for every p P one denes F(p):= X Mp(x)d, G(p):= X mp(x)d. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00526-004-0317-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2005-09, Vol.24 (1), p.111-129
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_219268574
source Springer Link
subjects Calculus
Calculus of variations
Economic models
Monopolies
title The monopolist’s problem: existence, relaxation, and approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20monopolist%E2%80%99s%20problem:%20existence,%20relaxation,%20and%20approximation&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Ghisi,%20Marina&rft.date=2005-09&rft.volume=24&rft.issue=1&rft.spage=111&rft.epage=129&rft.pages=111-129&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-004-0317-2&rft_dat=%3Cproquest_cross%3E871185051%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-bb7458e45ad88f0a9937434d8f05f2d4af10da2d8fdeb78ee63a000c60ba29b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=219268574&rft_id=info:pmid/&rfr_iscdi=true