Loading…

Green synthesis of enantiopure quinoxaline alcohols using Daucus carota

Green chemistry comprises a new approach in the synthesis of biologically active compounds using biocatalysts, thus diminishing the hazards for human health and environmental pollution. Asymmetric bioreduction is one of the most widely employed strategies in chemoenzymatic synthesis to produce enant...

Full description

Saved in:
Bibliographic Details
Published in:Chirality (New York, N.Y.) N.Y.), 2019-04, Vol.31 (4), p.312-320
Main Authors: Meshram, Sneha H., Ramesh, Tungana, Nanubolu, Jagadeesh Babu, Srivastava, Ajay Kumar, Adari, Bhaskar Rao, Sahu, Nivedita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Green chemistry comprises a new approach in the synthesis of biologically active compounds using biocatalysts, thus diminishing the hazards for human health and environmental pollution. Asymmetric bioreduction is one of the most widely employed strategies in chemoenzymatic synthesis to produce enantiomerically pure chiral alcohols. The present study highlights the use biocatalyst Daucus carota for selective bioreduction of quinoxaline ketones 1a‐6a to their corresponding optically pure alcohols 1b‐6b in high yields (up to 84%) and good enantioselectivity (up to 98%). The absolute configuration of the chiral product (R)‐1‐(3‐methyl 7‐nitroquinoxalin‐2‐yl) ethan‐1‐ol 2b was confirmed by X‐ray crystallography studies. The chiral R‐configuration of the products obtained was confirmed by absolute configuration studies and was assigned following anti‐Prelogs rule. Quinoxaline pharmacophores form a part of well‐known potent drug molecules; hence, the chiral products were studied for determination of their molecular properties using SwissADME property analyser. All the chiral products show no Lipinski rule violations and are expected to have good oral bioavailability. As per the molecular properties prediction studies, the compound 6b (R)‐1‐(6,7‐dichloro‐3‐ methylquinoxalin‐2‐yl) ethanol is observed to show the best physicochemical properties to be a good lead molecule. Thus, the sustainable methodology was developed, and it confirms the synthesis of novel quinoxaline chiral alcohols in a simple, inexpensive, and eco‐friendly condition using D carota.
ISSN:0899-0042
1520-636X
DOI:10.1002/chir.23057