Loading…

Integral Cayley graphs over dicyclic group

How to classify all the integral graphs is a challenging work as suggested by Harary and Schwenk. In this paper, we focus on one non-abelian group—the dicyclic group T4n=〈a,b|a2n=1,an=b2,b−1ab=a−1〉, and consider its corresponding Cayley graphs. With the help of its character table, we first obtain a...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2019-04, Vol.566, p.121-137
Main Authors: Cheng, Tao, Feng, Lihua, Huang, Hualin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3
cites cdi_FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3
container_end_page 137
container_issue
container_start_page 121
container_title Linear algebra and its applications
container_volume 566
creator Cheng, Tao
Feng, Lihua
Huang, Hualin
description How to classify all the integral graphs is a challenging work as suggested by Harary and Schwenk. In this paper, we focus on one non-abelian group—the dicyclic group T4n=〈a,b|a2n=1,an=b2,b−1ab=a−1〉, and consider its corresponding Cayley graphs. With the help of its character table, we first obtain a necessary and sufficient condition for the integrality of Cayley graphs over T4n. Then we obtain several simple sufficient conditions for the integrality of Cayley graphs over T4n in terms of the Boolean algebra of 〈a〉. As a byproduct, we determine a few infinite families of connected integral Cayley graphs over T4n. At last, for a prime p, we completely determine all integral Cayley graphs over the dicyclic group T4p.
doi_str_mv 10.1016/j.laa.2019.01.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193605707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379519300151</els_id><sourcerecordid>2193605707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AG8Fb0LrJG06LZ5kcXVhwYueQ5JONaVua9Jd6L83y3r2NDOP92aGj7FbDhkHXj50Wa91JoDXGfAMQJyxBa8wT3kly3O2iEqR5ljLS3YVQgcABYJYsPvNbqJPr_tkpeee5iT241dIhgP5pHF2tr2zURz24zW7aHUf6OavLtnH-vl99Zpu3142q6dtavOymlJbyMrYpkQNWFEjW2iOE7W5rlqLdWlapEIYqrmUVmiJRnAyNaBAbdDkS3Z32jv64WdPYVLdsPe7eFIJXuclSASMLn5yWT-E4KlVo3ff2s-KgzoiUZ2KSNQRiQKuIoCYeTxlKL5_cORVsI52lhrnyU6qGdw_6V9KNmhq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193605707</pqid></control><display><type>article</type><title>Integral Cayley graphs over dicyclic group</title><source>ScienceDirect Freedom Collection</source><creator>Cheng, Tao ; Feng, Lihua ; Huang, Hualin</creator><creatorcontrib>Cheng, Tao ; Feng, Lihua ; Huang, Hualin</creatorcontrib><description>How to classify all the integral graphs is a challenging work as suggested by Harary and Schwenk. In this paper, we focus on one non-abelian group—the dicyclic group T4n=〈a,b|a2n=1,an=b2,b−1ab=a−1〉, and consider its corresponding Cayley graphs. With the help of its character table, we first obtain a necessary and sufficient condition for the integrality of Cayley graphs over T4n. Then we obtain several simple sufficient conditions for the integrality of Cayley graphs over T4n in terms of the Boolean algebra of 〈a〉. As a byproduct, we determine a few infinite families of connected integral Cayley graphs over T4n. At last, for a prime p, we completely determine all integral Cayley graphs over the dicyclic group T4p.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2019.01.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Boolean algebra ; Character ; Dicyclic groups ; Eigenvalue ; Graphs ; Group theory ; Integral Cayley graph ; Integrals ; Linear algebra</subject><ispartof>Linear algebra and its applications, 2019-04, Vol.566, p.121-137</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3</citedby><cites>FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Feng, Lihua</creatorcontrib><creatorcontrib>Huang, Hualin</creatorcontrib><title>Integral Cayley graphs over dicyclic group</title><title>Linear algebra and its applications</title><description>How to classify all the integral graphs is a challenging work as suggested by Harary and Schwenk. In this paper, we focus on one non-abelian group—the dicyclic group T4n=〈a,b|a2n=1,an=b2,b−1ab=a−1〉, and consider its corresponding Cayley graphs. With the help of its character table, we first obtain a necessary and sufficient condition for the integrality of Cayley graphs over T4n. Then we obtain several simple sufficient conditions for the integrality of Cayley graphs over T4n in terms of the Boolean algebra of 〈a〉. As a byproduct, we determine a few infinite families of connected integral Cayley graphs over T4n. At last, for a prime p, we completely determine all integral Cayley graphs over the dicyclic group T4p.</description><subject>Boolean algebra</subject><subject>Character</subject><subject>Dicyclic groups</subject><subject>Eigenvalue</subject><subject>Graphs</subject><subject>Group theory</subject><subject>Integral Cayley graph</subject><subject>Integrals</subject><subject>Linear algebra</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AG8Fb0LrJG06LZ5kcXVhwYueQ5JONaVua9Jd6L83y3r2NDOP92aGj7FbDhkHXj50Wa91JoDXGfAMQJyxBa8wT3kly3O2iEqR5ljLS3YVQgcABYJYsPvNbqJPr_tkpeee5iT241dIhgP5pHF2tr2zURz24zW7aHUf6OavLtnH-vl99Zpu3142q6dtavOymlJbyMrYpkQNWFEjW2iOE7W5rlqLdWlapEIYqrmUVmiJRnAyNaBAbdDkS3Z32jv64WdPYVLdsPe7eFIJXuclSASMLn5yWT-E4KlVo3ff2s-KgzoiUZ2KSNQRiQKuIoCYeTxlKL5_cORVsI52lhrnyU6qGdw_6V9KNmhq</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Cheng, Tao</creator><creator>Feng, Lihua</creator><creator>Huang, Hualin</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190401</creationdate><title>Integral Cayley graphs over dicyclic group</title><author>Cheng, Tao ; Feng, Lihua ; Huang, Hualin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boolean algebra</topic><topic>Character</topic><topic>Dicyclic groups</topic><topic>Eigenvalue</topic><topic>Graphs</topic><topic>Group theory</topic><topic>Integral Cayley graph</topic><topic>Integrals</topic><topic>Linear algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Feng, Lihua</creatorcontrib><creatorcontrib>Huang, Hualin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Tao</au><au>Feng, Lihua</au><au>Huang, Hualin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral Cayley graphs over dicyclic group</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>566</volume><spage>121</spage><epage>137</epage><pages>121-137</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>How to classify all the integral graphs is a challenging work as suggested by Harary and Schwenk. In this paper, we focus on one non-abelian group—the dicyclic group T4n=〈a,b|a2n=1,an=b2,b−1ab=a−1〉, and consider its corresponding Cayley graphs. With the help of its character table, we first obtain a necessary and sufficient condition for the integrality of Cayley graphs over T4n. Then we obtain several simple sufficient conditions for the integrality of Cayley graphs over T4n in terms of the Boolean algebra of 〈a〉. As a byproduct, we determine a few infinite families of connected integral Cayley graphs over T4n. At last, for a prime p, we completely determine all integral Cayley graphs over the dicyclic group T4p.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2019.01.002</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2019-04, Vol.566, p.121-137
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2193605707
source ScienceDirect Freedom Collection
subjects Boolean algebra
Character
Dicyclic groups
Eigenvalue
Graphs
Group theory
Integral Cayley graph
Integrals
Linear algebra
title Integral Cayley graphs over dicyclic group
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A30%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20Cayley%20graphs%20over%20dicyclic%20group&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Cheng,%20Tao&rft.date=2019-04-01&rft.volume=566&rft.spage=121&rft.epage=137&rft.pages=121-137&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2019.01.002&rft_dat=%3Cproquest_cross%3E2193605707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-c458bcd67a078ed5f0dcd67ef3a8fc796bf7e42be9155c2a57b21eb90727ab7b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2193605707&rft_id=info:pmid/&rfr_iscdi=true