Loading…
The spectral radius of graphs without long cycles
Let Cℓ be a cycle of length ℓ and Sn,k=Kk∨Kn−k‾, the join graph of a complete graph of order k and an empty graph on n−k vertices, and Sn,k+ be the graph obtained from Sn,k by adding an edge in the independent set of Sn,k. Nikiforov conjectured that for a given integer k≥2, any graph G of sufficient...
Saved in:
Published in: | Linear algebra and its applications 2019-04, Vol.566, p.17-33 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03 |
container_end_page | 33 |
container_issue | |
container_start_page | 17 |
container_title | Linear algebra and its applications |
container_volume | 566 |
creator | Gao, Jun Hou, Xinmin |
description | Let Cℓ be a cycle of length ℓ and Sn,k=Kk∨Kn−k‾, the join graph of a complete graph of order k and an empty graph on n−k vertices, and Sn,k+ be the graph obtained from Sn,k by adding an edge in the independent set of Sn,k. Nikiforov conjectured that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains C2k+1 or C2k+2 (or C2k+2), unless G=Sn,k (or G=Sn,k+). In this paper, a weaker version of Nikiforov's conjecture is considered, we prove that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains a cycle Cℓ with ℓ≥2k+1 (or Cℓ with ℓ≥2k+2), unless G=Sn,k (or G=Sn,k+). These results also imply a result given by Nikiforov in (2010) [3, Theorem 2]. |
doi_str_mv | 10.1016/j.laa.2018.12.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2193612084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518305949</els_id><sourcerecordid>2193612084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU6YsRMnEStU8ZIqsSlry7EnraPQBDsB9e9xVdasZnPPvaPD2C1ChoDyvst6rTMOWGXIM-DijC2wKkWKVSHP2QKA56ko6-KSXYXQAUBeAl8w3OwoCSOZyes-8dq6OSRDm2y9Hnch-XHTbpinpB_228QcTE_hml20ug9083eX7OP5abN6TdfvL2-rx3VqhKymVDcNxIWm4RVSbmxtCGugVsi60qa0KFsrbV6UKGVuSZuiFrzRdd4Uoi0IxJLdnXpHP3zNFCbVDbPfx0nFsRYSOVR5TOEpZfwQgqdWjd59an9QCOpoRnUqmlFHMwq5imYi83BiKL7_7cirYBztDVnnowhlB_cP_QtoVWqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193612084</pqid></control><display><type>article</type><title>The spectral radius of graphs without long cycles</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gao, Jun ; Hou, Xinmin</creator><creatorcontrib>Gao, Jun ; Hou, Xinmin</creatorcontrib><description>Let Cℓ be a cycle of length ℓ and Sn,k=Kk∨Kn−k‾, the join graph of a complete graph of order k and an empty graph on n−k vertices, and Sn,k+ be the graph obtained from Sn,k by adding an edge in the independent set of Sn,k. Nikiforov conjectured that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains C2k+1 or C2k+2 (or C2k+2), unless G=Sn,k (or G=Sn,k+). In this paper, a weaker version of Nikiforov's conjecture is considered, we prove that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains a cycle Cℓ with ℓ≥2k+1 (or Cℓ with ℓ≥2k+2), unless G=Sn,k (or G=Sn,k+). These results also imply a result given by Nikiforov in (2010) [3, Theorem 2].</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.12.023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Apexes ; Cycle ; Extremal problem ; Graph theory ; Linear algebra ; Spectra ; Spectral radius</subject><ispartof>Linear algebra and its applications, 2019-04, Vol.566, p.17-33</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03</citedby><cites>FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Hou, Xinmin</creatorcontrib><title>The spectral radius of graphs without long cycles</title><title>Linear algebra and its applications</title><description>Let Cℓ be a cycle of length ℓ and Sn,k=Kk∨Kn−k‾, the join graph of a complete graph of order k and an empty graph on n−k vertices, and Sn,k+ be the graph obtained from Sn,k by adding an edge in the independent set of Sn,k. Nikiforov conjectured that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains C2k+1 or C2k+2 (or C2k+2), unless G=Sn,k (or G=Sn,k+). In this paper, a weaker version of Nikiforov's conjecture is considered, we prove that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains a cycle Cℓ with ℓ≥2k+1 (or Cℓ with ℓ≥2k+2), unless G=Sn,k (or G=Sn,k+). These results also imply a result given by Nikiforov in (2010) [3, Theorem 2].</description><subject>Apexes</subject><subject>Cycle</subject><subject>Extremal problem</subject><subject>Graph theory</subject><subject>Linear algebra</subject><subject>Spectra</subject><subject>Spectral radius</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU6YsRMnEStU8ZIqsSlry7EnraPQBDsB9e9xVdasZnPPvaPD2C1ChoDyvst6rTMOWGXIM-DijC2wKkWKVSHP2QKA56ko6-KSXYXQAUBeAl8w3OwoCSOZyes-8dq6OSRDm2y9Hnch-XHTbpinpB_228QcTE_hml20ug9083eX7OP5abN6TdfvL2-rx3VqhKymVDcNxIWm4RVSbmxtCGugVsi60qa0KFsrbV6UKGVuSZuiFrzRdd4Uoi0IxJLdnXpHP3zNFCbVDbPfx0nFsRYSOVR5TOEpZfwQgqdWjd59an9QCOpoRnUqmlFHMwq5imYi83BiKL7_7cirYBztDVnnowhlB_cP_QtoVWqg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Gao, Jun</creator><creator>Hou, Xinmin</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190401</creationdate><title>The spectral radius of graphs without long cycles</title><author>Gao, Jun ; Hou, Xinmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Cycle</topic><topic>Extremal problem</topic><topic>Graph theory</topic><topic>Linear algebra</topic><topic>Spectra</topic><topic>Spectral radius</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jun</creatorcontrib><creatorcontrib>Hou, Xinmin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jun</au><au>Hou, Xinmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spectral radius of graphs without long cycles</atitle><jtitle>Linear algebra and its applications</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>566</volume><spage>17</spage><epage>33</epage><pages>17-33</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let Cℓ be a cycle of length ℓ and Sn,k=Kk∨Kn−k‾, the join graph of a complete graph of order k and an empty graph on n−k vertices, and Sn,k+ be the graph obtained from Sn,k by adding an edge in the independent set of Sn,k. Nikiforov conjectured that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains C2k+1 or C2k+2 (or C2k+2), unless G=Sn,k (or G=Sn,k+). In this paper, a weaker version of Nikiforov's conjecture is considered, we prove that for a given integer k≥2, any graph G of sufficiently large order n with spectral radius μ(G)≥μ(Sn,k) (or μ(G)≥μ(Sn,k+)) contains a cycle Cℓ with ℓ≥2k+1 (or Cℓ with ℓ≥2k+2), unless G=Sn,k (or G=Sn,k+). These results also imply a result given by Nikiforov in (2010) [3, Theorem 2].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.12.023</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2019-04, Vol.566, p.17-33 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2193612084 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Apexes Cycle Extremal problem Graph theory Linear algebra Spectra Spectral radius |
title | The spectral radius of graphs without long cycles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spectral%20radius%20of%20graphs%20without%20long%20cycles&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Gao,%20Jun&rft.date=2019-04-01&rft.volume=566&rft.spage=17&rft.epage=33&rft.pages=17-33&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.12.023&rft_dat=%3Cproquest_cross%3E2193612084%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-abb0702bb281e4cd9ce190ef3698ac7d16fd6d4571664deac5932ba94b53f5e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2193612084&rft_id=info:pmid/&rfr_iscdi=true |