Loading…

The suppression of aberrant crypt multiplicity in colonic tissue of 1,2-dimethylhydrazine-treated C57BL/6J mice by dietary flavone is associated with an increased expression of Krebs cycle enzymes

Colorectal cancer is the second leading cause of cancer deaths worldwide with diet playing a prominent role in disease initiation and progression. Flavonoids are secondary plant compounds that are suggested as protective ingredients of a diet rich in fruits and vegetables. We here tested whether fla...

Full description

Saved in:
Bibliographic Details
Published in:Carcinogenesis (New York) 2007-07, Vol.28 (7), p.1446-1454
Main Authors: Winkelmann, Isabel, Diehl, Daniela, Oesterle, Doris, Daniel, Hannelore, Wenzel, Uwe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Colorectal cancer is the second leading cause of cancer deaths worldwide with diet playing a prominent role in disease initiation and progression. Flavonoids are secondary plant compounds that are suggested as protective ingredients of a diet rich in fruits and vegetables. We here tested whether flavone, a flavonoid that proved to be an effective apoptosis inducer in colon cancer cells in culture, can affect the development of aberrant crypt foci (ACFs) in C57BL/6J mice in vivo when preneoplastic lesions were induced by the carcinogen 1,2-dimethylhydrazine (DMH). Flavone applied at either a low dose (15 mg/kg body wt per day) or a high dose (400 mg/kg body wt per day) reduced the numbers of ACFs significantly, independent of whether it was supplied simultaneously with the carcinogen (blocking group) or subsequent to the tumor induction phase (suppressing group). Proteome analysis performed in colonic tissue samples revealed that flavone treatment increased the expression of a number of Krebs cycle enzymes in the suppressing group and this was associated with reduced crypt multiplicity. It suggests that mitochondrial substrate oxidation is increased by flavone in colonic cells in vivo as already observed in HT-29 cells in vitro as the prime mechanism underlying tumor cell apoptosis induction by flavone. In conclusion, flavone reduces the number of ACFs in DMH-treated mice at doses that can be achieved for flavonoids by a diet rich in fruits and vegetables. Moreover, reduction in crypt multiplicity by flavone is most probably due to the preservation of a normal oxidative metabolism.
ISSN:0143-3334
1460-2180
DOI:10.1093/carcin/bgm040