Loading…

The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy

The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy has been studied. The starting materials were Cr, Fe, Ni, Cu, and Ti powders in the equiatomic ratio. To prepare the starting charge, the powders were mixed and mechani...

Full description

Saved in:
Bibliographic Details
Published in:Powder metallurgy and metal ceramics 2019-01, Vol.57 (9-10), p.533-541
Main Authors: Marych, M.V., Bagliuk, G.A., Mamonova, A.A., Gripachevskii, A.N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3
cites cdi_FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3
container_end_page 541
container_issue 9-10
container_start_page 533
container_title Powder metallurgy and metal ceramics
container_volume 57
creator Marych, M.V.
Bagliuk, G.A.
Mamonova, A.A.
Gripachevskii, A.N.
description The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy has been studied. The starting materials were Cr, Fe, Ni, Cu, and Ti powders in the equiatomic ratio. To prepare the starting charge, the powders were mixed and mechanically alloyed in a planetary-ball mill. The compacted billets were hot-forged and then annealed at 1000, 1100, and 1200°C. The phase composition of the hot-forged and annealed alloys is mainly represented by FCC structure. There are few peaks of BCC structures, intermetallides, and titanium. Mechanical synthesis leads to significant distortion of crystalline lattices of all elements in the powder mixture, which is evidenced by substantial broadening of interference lines. The hardness and lattice distortion of the hot-forged samples decrease after annealing with increasing temperature. The materials made of the starting mixtures subjected to preliminary mechanical alloying show higher hardness. The hardness increases with grinding time for both unannealed samples and those annealed at all temperatures concerned.
doi_str_mv 10.1007/s11106-019-00012-z
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2194246286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580518761</galeid><sourcerecordid>A580518761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3</originalsourceid><addsrcrecordid>eNp9UcFqGzEQXUoLTdP-QE-CXqN0pN3Vao_GJE0gtIG4ZyFrJVthLbmS9uCccu41f5gv6dhb6K0IRqM3741meFX1mcElA-i-ZsYYCAqspwDAOH16U52xtqtpD0K8xRyEpKwG_r76kPMjcgAadlb9Xm0tuQ1unGwwlkRHHg6hbG32mSxjGHzxMWQSA0GQ3G91tojv9jGfKhfkoaTJlCnZC6LDQO5T3NtUvM3HXkfNjd9s6VUoWDiQlX99flkmDNcWw_fTcyKLcYyHj9U7p8dsP_29z6uf11er5Q29-_Htdrm4o6ZuZaFmaHFyDroFrXErI9d9x5nGjYRp6ppJ1xldy7YR0Ha9tLwXsh_cer02wJyrz6svc999ir8mm4t6jFMK-KXirG94I7gUyLqcWRs9WuWDiyVpg2ewO29isM4jvmgltEx2gqGAzwKTYs7JOrVPfqfTQTFQR5PUbJJCk9TJJPWEonoWZSSHjU3_ZvmP6g-GpZid</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194246286</pqid></control><display><type>article</type><title>The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy</title><source>Springer Nature</source><creator>Marych, M.V. ; Bagliuk, G.A. ; Mamonova, A.A. ; Gripachevskii, A.N.</creator><creatorcontrib>Marych, M.V. ; Bagliuk, G.A. ; Mamonova, A.A. ; Gripachevskii, A.N.</creatorcontrib><description>The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy has been studied. The starting materials were Cr, Fe, Ni, Cu, and Ti powders in the equiatomic ratio. To prepare the starting charge, the powders were mixed and mechanically alloyed in a planetary-ball mill. The compacted billets were hot-forged and then annealed at 1000, 1100, and 1200°C. The phase composition of the hot-forged and annealed alloys is mainly represented by FCC structure. There are few peaks of BCC structures, intermetallides, and titanium. Mechanical synthesis leads to significant distortion of crystalline lattices of all elements in the powder mixture, which is evidenced by substantial broadening of interference lines. The hardness and lattice distortion of the hot-forged samples decrease after annealing with increasing temperature. The materials made of the starting mixtures subjected to preliminary mechanical alloying show higher hardness. The hardness increases with grinding time for both unannealed samples and those annealed at all temperatures concerned.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-019-00012-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Analysis ; Annealing ; Ball milling ; Ball mills ; Billet mills ; Body centered cubic lattice ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Composites ; Copper ; Crystal lattices ; Distortion ; Face centered cubic lattice ; Glass ; Hardness ; Hardness (Materials) ; High entropy alloys ; Iron ; Materials Science ; Mechanical alloying ; Metallic Materials ; Metals (Materials) ; Natural Materials ; Phase composition ; Powders (Particulate matter) ; Specialty metals industry ; Synthesis ; Titanium</subject><ispartof>Powder metallurgy and metal ceramics, 2019-01, Vol.57 (9-10), p.533-541</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3</citedby><cites>FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Marych, M.V.</creatorcontrib><creatorcontrib>Bagliuk, G.A.</creatorcontrib><creatorcontrib>Mamonova, A.A.</creatorcontrib><creatorcontrib>Gripachevskii, A.N.</creatorcontrib><title>The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy has been studied. The starting materials were Cr, Fe, Ni, Cu, and Ti powders in the equiatomic ratio. To prepare the starting charge, the powders were mixed and mechanically alloyed in a planetary-ball mill. The compacted billets were hot-forged and then annealed at 1000, 1100, and 1200°C. The phase composition of the hot-forged and annealed alloys is mainly represented by FCC structure. There are few peaks of BCC structures, intermetallides, and titanium. Mechanical synthesis leads to significant distortion of crystalline lattices of all elements in the powder mixture, which is evidenced by substantial broadening of interference lines. The hardness and lattice distortion of the hot-forged samples decrease after annealing with increasing temperature. The materials made of the starting mixtures subjected to preliminary mechanical alloying show higher hardness. The hardness increases with grinding time for both unannealed samples and those annealed at all temperatures concerned.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Ball milling</subject><subject>Ball mills</subject><subject>Billet mills</subject><subject>Body centered cubic lattice</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Composites</subject><subject>Copper</subject><subject>Crystal lattices</subject><subject>Distortion</subject><subject>Face centered cubic lattice</subject><subject>Glass</subject><subject>Hardness</subject><subject>Hardness (Materials)</subject><subject>High entropy alloys</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Metallic Materials</subject><subject>Metals (Materials)</subject><subject>Natural Materials</subject><subject>Phase composition</subject><subject>Powders (Particulate matter)</subject><subject>Specialty metals industry</subject><subject>Synthesis</subject><subject>Titanium</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcFqGzEQXUoLTdP-QE-CXqN0pN3Vao_GJE0gtIG4ZyFrJVthLbmS9uCccu41f5gv6dhb6K0IRqM3741meFX1mcElA-i-ZsYYCAqspwDAOH16U52xtqtpD0K8xRyEpKwG_r76kPMjcgAadlb9Xm0tuQ1unGwwlkRHHg6hbG32mSxjGHzxMWQSA0GQ3G91tojv9jGfKhfkoaTJlCnZC6LDQO5T3NtUvM3HXkfNjd9s6VUoWDiQlX99flkmDNcWw_fTcyKLcYyHj9U7p8dsP_29z6uf11er5Q29-_Htdrm4o6ZuZaFmaHFyDroFrXErI9d9x5nGjYRp6ppJ1xldy7YR0Ha9tLwXsh_cer02wJyrz6svc999ir8mm4t6jFMK-KXirG94I7gUyLqcWRs9WuWDiyVpg2ewO29isM4jvmgltEx2gqGAzwKTYs7JOrVPfqfTQTFQR5PUbJJCk9TJJPWEonoWZSSHjU3_ZvmP6g-GpZid</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Marych, M.V.</creator><creator>Bagliuk, G.A.</creator><creator>Mamonova, A.A.</creator><creator>Gripachevskii, A.N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy</title><author>Marych, M.V. ; Bagliuk, G.A. ; Mamonova, A.A. ; Gripachevskii, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Ball milling</topic><topic>Ball mills</topic><topic>Billet mills</topic><topic>Body centered cubic lattice</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Composites</topic><topic>Copper</topic><topic>Crystal lattices</topic><topic>Distortion</topic><topic>Face centered cubic lattice</topic><topic>Glass</topic><topic>Hardness</topic><topic>Hardness (Materials)</topic><topic>High entropy alloys</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Metallic Materials</topic><topic>Metals (Materials)</topic><topic>Natural Materials</topic><topic>Phase composition</topic><topic>Powders (Particulate matter)</topic><topic>Specialty metals industry</topic><topic>Synthesis</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marych, M.V.</creatorcontrib><creatorcontrib>Bagliuk, G.A.</creatorcontrib><creatorcontrib>Mamonova, A.A.</creatorcontrib><creatorcontrib>Gripachevskii, A.N.</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marych, M.V.</au><au>Bagliuk, G.A.</au><au>Mamonova, A.A.</au><au>Gripachevskii, A.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>57</volume><issue>9-10</issue><spage>533</spage><epage>541</epage><pages>533-541</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The influence of production conditions on the structure, phase composition, and properties of the high-entropy Ti–Cr–Fe–Ni–Cu alloy has been studied. The starting materials were Cr, Fe, Ni, Cu, and Ti powders in the equiatomic ratio. To prepare the starting charge, the powders were mixed and mechanically alloyed in a planetary-ball mill. The compacted billets were hot-forged and then annealed at 1000, 1100, and 1200°C. The phase composition of the hot-forged and annealed alloys is mainly represented by FCC structure. There are few peaks of BCC structures, intermetallides, and titanium. Mechanical synthesis leads to significant distortion of crystalline lattices of all elements in the powder mixture, which is evidenced by substantial broadening of interference lines. The hardness and lattice distortion of the hot-forged samples decrease after annealing with increasing temperature. The materials made of the starting mixtures subjected to preliminary mechanical alloying show higher hardness. The hardness increases with grinding time for both unannealed samples and those annealed at all temperatures concerned.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-019-00012-z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-1302
ispartof Powder metallurgy and metal ceramics, 2019-01, Vol.57 (9-10), p.533-541
issn 1068-1302
1573-9066
language eng
recordid cdi_proquest_journals_2194246286
source Springer Nature
subjects Alloys
Analysis
Annealing
Ball milling
Ball mills
Billet mills
Body centered cubic lattice
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Composites
Copper
Crystal lattices
Distortion
Face centered cubic lattice
Glass
Hardness
Hardness (Materials)
High entropy alloys
Iron
Materials Science
Mechanical alloying
Metallic Materials
Metals (Materials)
Natural Materials
Phase composition
Powders (Particulate matter)
Specialty metals industry
Synthesis
Titanium
title The Influence of Synthesis Conditions on the Phase Composition, Structure, and Properties of the High-Entropy Ti–Cr–Fe–Ni–Cu Alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A15%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Synthesis%20Conditions%20on%20the%20Phase%20Composition,%20Structure,%20and%20Properties%20of%20the%20High-Entropy%20Ti%E2%80%93Cr%E2%80%93Fe%E2%80%93Ni%E2%80%93Cu%20Alloy&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Marych,%20M.V.&rft.date=2019-01-01&rft.volume=57&rft.issue=9-10&rft.spage=533&rft.epage=541&rft.pages=533-541&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-019-00012-z&rft_dat=%3Cgale_proqu%3EA580518761%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-cd504120a50aa068c8b9721a0106c43318f7ca3854605798e29689dfbbbc01ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194246286&rft_id=info:pmid/&rft_galeid=A580518761&rfr_iscdi=true