Loading…

Cloning and characterization of MdGST1 from red apple leaves

Glutathione S-transferase (GST) is involved in the downstream steps of the anthocyanin biosynthesis pathway in plants. However, the gene(s) encoding this enzyme have not been isolated from apple (Malus × domestica Borkh.) yet. We isolated a gene encoding GST from leaves of the red-fleshed apple vari...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of plant science 2018-10, Vol.98 (5), p.1150-1158
Main Authors: Han, Xiaolei, Zhang, Caixia, Tian, Yi, Gul, Hera, Cong, Peihua, Zhang, Liyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutathione S-transferase (GST) is involved in the downstream steps of the anthocyanin biosynthesis pathway in plants. However, the gene(s) encoding this enzyme have not been isolated from apple (Malus × domestica Borkh.) yet. We isolated a gene encoding GST from leaves of the red-fleshed apple variety ‘Royalty’ by full cDNA library sequencing and the 3′ rapid-amplification of cDNA ends method, and designated it MdGST1. In total, seven different MdGST1 transcripts were found. These had three different untranslated but identical protein-coding regions. Phylogenetic analysis showed that MdGST1 is a TT19-type GST, which is involved in anthocyanin transport. qRT-PCR analyses showed that the transcript level of MdGST1 was much higher in red leaves than in bagged or green leaves. When MdGST1 was introduced into a non-pigmented mutant of Arabidopsis, the transformants showed a visible purple phenotype in leaves and stems. Our results suggest that MdGST1 plays a role in anthocyanin biosynthesis. This information will help to improve the understanding of the mechanism of apple coloration.
ISSN:0008-4220
1918-1833
DOI:10.1139/cjps-2017-0330