Loading…

On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy

We consider the electrostatic Born–Infeld energy ∫ R N 1 - 1 - | ∇ u | 2 d x - ∫ R N ρ u d x , where ρ ∈ L m ( R N ) is an assigned charge density, m ∈ [ 1 , 2 ∗ ] , 2 ∗ : = 2 N N + 2 , N ≥ 3 . We prove that if ρ ∈ L q ( R N ) for q > 2 N , the unique minimizer u ρ is of class W loc 2 , 2 ( R N )...

Full description

Saved in:
Bibliographic Details
Published in:Archive for rational mechanics and analysis 2019-05, Vol.232 (2), p.697-725
Main Authors: Bonheure, Denis, Iacopetti, Alessandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063
cites cdi_FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063
container_end_page 725
container_issue 2
container_start_page 697
container_title Archive for rational mechanics and analysis
container_volume 232
creator Bonheure, Denis
Iacopetti, Alessandro
description We consider the electrostatic Born–Infeld energy ∫ R N 1 - 1 - | ∇ u | 2 d x - ∫ R N ρ u d x , where ρ ∈ L m ( R N ) is an assigned charge density, m ∈ [ 1 , 2 ∗ ] , 2 ∗ : = 2 N N + 2 , N ≥ 3 . We prove that if ρ ∈ L q ( R N ) for q > 2 N , the unique minimizer u ρ is of class W loc 2 , 2 ( R N ) . Moreover, if the norm of ρ is sufficiently small, the minimizer is a weak solution of the associated PDE - div ∇ u 1 - | ∇ u | 2 = ρ in R N , ( BI ) with the boundary condition lim | x | → ∞ u ( x ) = 0 , and it is of class C loc 1 , α ( R N ) for some α ∈ ( 0 , 1 ) .
doi_str_mv 10.1007/s00205-018-1331-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194643412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194643412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHaRWBvGHjtxllCVUqmoEurecoNdUqVJsd1FWXEHbshJcAmIFavRjP7_M_MIuWRwzQCKmwDAQVJgijJERsURGTCBnEJe4DEZAADSUvLilJyFsD60HPMBmc3bLL7Y7Mmudo3xddxnnfuePNZtvanfrP8djBtbRd-FaGJdZXedbz_fP6ats81zNm6tX-3PyYkzTbAXP3VIFvfjxeiBzuaT6eh2RitkeaQqd6aQaLkByYA7BSVKiaWSTIglCuuw4GhKZThaYwuljFnKZCrTM5DjkFz1sVvfve5siHrd7XybNmrOSpELFIwnFetVVbo5eOv01tcb4_eagT4w0z0znZjpAzMtkof3npC07cr6v-T_TV-1K22d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194643412</pqid></control><display><type>article</type><title>On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy</title><source>Springer Nature</source><creator>Bonheure, Denis ; Iacopetti, Alessandro</creator><creatorcontrib>Bonheure, Denis ; Iacopetti, Alessandro</creatorcontrib><description>We consider the electrostatic Born–Infeld energy ∫ R N 1 - 1 - | ∇ u | 2 d x - ∫ R N ρ u d x , where ρ ∈ L m ( R N ) is an assigned charge density, m ∈ [ 1 , 2 ∗ ] , 2 ∗ : = 2 N N + 2 , N ≥ 3 . We prove that if ρ ∈ L q ( R N ) for q &gt; 2 N , the unique minimizer u ρ is of class W loc 2 , 2 ( R N ) . Moreover, if the norm of ρ is sufficiently small, the minimizer is a weak solution of the associated PDE - div ∇ u 1 - | ∇ u | 2 = ρ in R N , ( BI ) with the boundary condition lim | x | → ∞ u ( x ) = 0 , and it is of class C loc 1 , α ( R N ) for some α ∈ ( 0 , 1 ) .</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-018-1331-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Charge density ; Classical Mechanics ; Complex Systems ; Fluid- and Aerodynamics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Archive for rational mechanics and analysis, 2019-05, Vol.232 (2), p.697-725</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063</citedby><cites>FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Iacopetti, Alessandro</creatorcontrib><title>On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>We consider the electrostatic Born–Infeld energy ∫ R N 1 - 1 - | ∇ u | 2 d x - ∫ R N ρ u d x , where ρ ∈ L m ( R N ) is an assigned charge density, m ∈ [ 1 , 2 ∗ ] , 2 ∗ : = 2 N N + 2 , N ≥ 3 . We prove that if ρ ∈ L q ( R N ) for q &gt; 2 N , the unique minimizer u ρ is of class W loc 2 , 2 ( R N ) . Moreover, if the norm of ρ is sufficiently small, the minimizer is a weak solution of the associated PDE - div ∇ u 1 - | ∇ u | 2 = ρ in R N , ( BI ) with the boundary condition lim | x | → ∞ u ( x ) = 0 , and it is of class C loc 1 , α ( R N ) for some α ∈ ( 0 , 1 ) .</description><subject>Boundary conditions</subject><subject>Charge density</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqVwAHaRWBvGHjtxllCVUqmoEurecoNdUqVJsd1FWXEHbshJcAmIFavRjP7_M_MIuWRwzQCKmwDAQVJgijJERsURGTCBnEJe4DEZAADSUvLilJyFsD60HPMBmc3bLL7Y7Mmudo3xddxnnfuePNZtvanfrP8djBtbRd-FaGJdZXedbz_fP6ats81zNm6tX-3PyYkzTbAXP3VIFvfjxeiBzuaT6eh2RitkeaQqd6aQaLkByYA7BSVKiaWSTIglCuuw4GhKZThaYwuljFnKZCrTM5DjkFz1sVvfve5siHrd7XybNmrOSpELFIwnFetVVbo5eOv01tcb4_eagT4w0z0znZjpAzMtkof3npC07cr6v-T_TV-1K22d</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Bonheure, Denis</creator><creator>Iacopetti, Alessandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190502</creationdate><title>On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy</title><author>Bonheure, Denis ; Iacopetti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Charge density</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonheure, Denis</creatorcontrib><creatorcontrib>Iacopetti, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonheure, Denis</au><au>Iacopetti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2019-05-02</date><risdate>2019</risdate><volume>232</volume><issue>2</issue><spage>697</spage><epage>725</epage><pages>697-725</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>We consider the electrostatic Born–Infeld energy ∫ R N 1 - 1 - | ∇ u | 2 d x - ∫ R N ρ u d x , where ρ ∈ L m ( R N ) is an assigned charge density, m ∈ [ 1 , 2 ∗ ] , 2 ∗ : = 2 N N + 2 , N ≥ 3 . We prove that if ρ ∈ L q ( R N ) for q &gt; 2 N , the unique minimizer u ρ is of class W loc 2 , 2 ( R N ) . Moreover, if the norm of ρ is sufficiently small, the minimizer is a weak solution of the associated PDE - div ∇ u 1 - | ∇ u | 2 = ρ in R N , ( BI ) with the boundary condition lim | x | → ∞ u ( x ) = 0 , and it is of class C loc 1 , α ( R N ) for some α ∈ ( 0 , 1 ) .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-018-1331-4</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2019-05, Vol.232 (2), p.697-725
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_journals_2194643412
source Springer Nature
subjects Boundary conditions
Charge density
Classical Mechanics
Complex Systems
Fluid- and Aerodynamics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title On the Regularity of the Minimizer of the Electrostatic Born–Infeld Energy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A58%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Regularity%20of%20the%20Minimizer%20of%20the%20Electrostatic%20Born%E2%80%93Infeld%20Energy&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bonheure,%20Denis&rft.date=2019-05-02&rft.volume=232&rft.issue=2&rft.spage=697&rft.epage=725&rft.pages=697-725&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-018-1331-4&rft_dat=%3Cproquest_cross%3E2194643412%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-86fa753e2a05102f8093553985144b34ef3723a98a23eae788aab56fa9067063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194643412&rft_id=info:pmid/&rfr_iscdi=true