Loading…
Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis
In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assu...
Saved in:
Published in: | Arabian journal for science and engineering (2011) 2019-04, Vol.44 (4), p.3425-3437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3 |
container_end_page | 3437 |
container_issue | 4 |
container_start_page | 3425 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 44 |
creator | Jidesh, P. Febin, I. P. |
description | In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model. |
doi_str_mv | 10.1007/s13369-018-3542-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194643470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194643470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmH_txLLXVQlEQC54MaTZZVrebmmyR-utNXcGTp5nD87zMvAhdAr0GSvObCJxnJaFQEC4FI-wEjRiUQAQr4PRn50Rm-cs5msTYbKgoeCkB-Ai9zmPfbHXf-A57hx98Ey1ex6ar096R1hvd4idb71sdmq-BWwS9tZ8-vEfsfMDLra4tvrVdco-e7io87XR7iE28QGdOt9FOfucYrRfz59k9WT3eLWfTFTEcsp5oXoIWxuTalfmGGmc3GqzLQQrLGOOFrGSueV5VLPFQlSzT1jjpjCusLCwfo6shdxf8x97GXr35fUhHRJWeF5ngIqeJgoEywccYrFO7kJ4PBwVUHZtUQ5MqNamOTSqWHDY4MbFdbcNf8v_SNz88d0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194643470</pqid></control><display><type>article</type><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><source>Springer Nature</source><creator>Jidesh, P. ; Febin, I. P.</creator><creatorcontrib>Jidesh, P. ; Febin, I. P.</creatorcontrib><description>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-018-3542-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Humanities and Social Sciences ; Image detection ; Image restoration ; Mathematical models ; multidisciplinary ; Noise ; Noise reduction ; Parameter estimation ; Regularization ; Research Article - Computer Engineering and Computer Science ; Robustness (mathematics) ; Science ; Solvers</subject><ispartof>Arabian journal for science and engineering (2011), 2019-04, Vol.44 (4), p.3425-3437</ispartof><rights>King Fahd University of Petroleum & Minerals 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</citedby><cites>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jidesh, P.</creatorcontrib><creatorcontrib>Febin, I. P.</creatorcontrib><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Image detection</subject><subject>Image restoration</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Parameter estimation</subject><subject>Regularization</subject><subject>Research Article - Computer Engineering and Computer Science</subject><subject>Robustness (mathematics)</subject><subject>Science</subject><subject>Solvers</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmH_txLLXVQlEQC54MaTZZVrebmmyR-utNXcGTp5nD87zMvAhdAr0GSvObCJxnJaFQEC4FI-wEjRiUQAQr4PRn50Rm-cs5msTYbKgoeCkB-Ai9zmPfbHXf-A57hx98Ey1ex6ar096R1hvd4idb71sdmq-BWwS9tZ8-vEfsfMDLra4tvrVdco-e7io87XR7iE28QGdOt9FOfucYrRfz59k9WT3eLWfTFTEcsp5oXoIWxuTalfmGGmc3GqzLQQrLGOOFrGSueV5VLPFQlSzT1jjpjCusLCwfo6shdxf8x97GXr35fUhHRJWeF5ngIqeJgoEywccYrFO7kJ4PBwVUHZtUQ5MqNamOTSqWHDY4MbFdbcNf8v_SNz88d0M</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Jidesh, P.</creator><creator>Febin, I. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><author>Jidesh, P. ; Febin, I. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Image detection</topic><topic>Image restoration</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Parameter estimation</topic><topic>Regularization</topic><topic>Research Article - Computer Engineering and Computer Science</topic><topic>Robustness (mathematics)</topic><topic>Science</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jidesh, P.</creatorcontrib><creatorcontrib>Febin, I. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jidesh, P.</au><au>Febin, I. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>44</volume><issue>4</issue><spage>3425</spage><epage>3437</epage><pages>3425-3437</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-018-3542-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2019-04, Vol.44 (4), p.3425-3437 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2194643470 |
source | Springer Nature |
subjects | Engineering Humanities and Social Sciences Image detection Image restoration Mathematical models multidisciplinary Noise Noise reduction Parameter estimation Regularization Research Article - Computer Engineering and Computer Science Robustness (mathematics) Science Solvers |
title | Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Noise%20Using%20Non-local%20Regularization%20Frameworks%20for%20Image%20Denoising%20and%20Analysis&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Jidesh,%20P.&rft.date=2019-04-01&rft.volume=44&rft.issue=4&rft.spage=3425&rft.epage=3437&rft.pages=3425-3437&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-018-3542-2&rft_dat=%3Cproquest_cross%3E2194643470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194643470&rft_id=info:pmid/&rfr_iscdi=true |