Loading…

Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis

In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assu...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal for science and engineering (2011) 2019-04, Vol.44 (4), p.3425-3437
Main Authors: Jidesh, P., Febin, I. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3
cites cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3
container_end_page 3437
container_issue 4
container_start_page 3425
container_title Arabian journal for science and engineering (2011)
container_volume 44
creator Jidesh, P.
Febin, I. P.
description In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.
doi_str_mv 10.1007/s13369-018-3542-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194643470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194643470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmH_txLLXVQlEQC54MaTZZVrebmmyR-utNXcGTp5nD87zMvAhdAr0GSvObCJxnJaFQEC4FI-wEjRiUQAQr4PRn50Rm-cs5msTYbKgoeCkB-Ai9zmPfbHXf-A57hx98Ey1ex6ar096R1hvd4idb71sdmq-BWwS9tZ8-vEfsfMDLra4tvrVdco-e7io87XR7iE28QGdOt9FOfucYrRfz59k9WT3eLWfTFTEcsp5oXoIWxuTalfmGGmc3GqzLQQrLGOOFrGSueV5VLPFQlSzT1jjpjCusLCwfo6shdxf8x97GXr35fUhHRJWeF5ngIqeJgoEywccYrFO7kJ4PBwVUHZtUQ5MqNamOTSqWHDY4MbFdbcNf8v_SNz88d0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194643470</pqid></control><display><type>article</type><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><source>Springer Nature</source><creator>Jidesh, P. ; Febin, I. P.</creator><creatorcontrib>Jidesh, P. ; Febin, I. P.</creatorcontrib><description>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-018-3542-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Humanities and Social Sciences ; Image detection ; Image restoration ; Mathematical models ; multidisciplinary ; Noise ; Noise reduction ; Parameter estimation ; Regularization ; Research Article - Computer Engineering and Computer Science ; Robustness (mathematics) ; Science ; Solvers</subject><ispartof>Arabian journal for science and engineering (2011), 2019-04, Vol.44 (4), p.3425-3437</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</citedby><cites>FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jidesh, P.</creatorcontrib><creatorcontrib>Febin, I. P.</creatorcontrib><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Image detection</subject><subject>Image restoration</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Parameter estimation</subject><subject>Regularization</subject><subject>Research Article - Computer Engineering and Computer Science</subject><subject>Robustness (mathematics)</subject><subject>Science</subject><subject>Solvers</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52gmH_txLLXVQlEQC54MaTZZVrebmmyR-utNXcGTp5nD87zMvAhdAr0GSvObCJxnJaFQEC4FI-wEjRiUQAQr4PRn50Rm-cs5msTYbKgoeCkB-Ai9zmPfbHXf-A57hx98Ey1ex6ar096R1hvd4idb71sdmq-BWwS9tZ8-vEfsfMDLra4tvrVdco-e7io87XR7iE28QGdOt9FOfucYrRfz59k9WT3eLWfTFTEcsp5oXoIWxuTalfmGGmc3GqzLQQrLGOOFrGSueV5VLPFQlSzT1jjpjCusLCwfo6shdxf8x97GXr35fUhHRJWeF5ngIqeJgoEywccYrFO7kJ4PBwVUHZtUQ5MqNamOTSqWHDY4MbFdbcNf8v_SNz88d0M</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Jidesh, P.</creator><creator>Febin, I. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</title><author>Jidesh, P. ; Febin, I. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Image detection</topic><topic>Image restoration</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Parameter estimation</topic><topic>Regularization</topic><topic>Research Article - Computer Engineering and Computer Science</topic><topic>Robustness (mathematics)</topic><topic>Science</topic><topic>Solvers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jidesh, P.</creatorcontrib><creatorcontrib>Febin, I. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jidesh, P.</au><au>Febin, I. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>44</volume><issue>4</issue><spage>3425</spage><epage>3437</epage><pages>3425-3437</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>In this paper, we propose a novel model which adaptively estimates the noise probability distribution and noise parameters from the input image and restores the data accordingly choosing appropriate regularization model designed for it. In most imaging applications the noise characteristics are assumed prior to the restoration process. This assumption is generally based on the previous experimental study of the images from a specific modality. The adaptive detection of the noise distribution from the data makes it robust and highly suitable for automated signal and image restoration systems. The non-local framework implemented using fast numerical solvers catalyzes the convergence rate of the model. Here we analyze three different noise distributions such as Gamma, Poisson, and Gaussian. Among this Gaussian is additive and source independent, Gamma is multiplicative and source dependent, and finally Poisson is data dependent (neither multiplicative nor additive). The model can be extended to the other source-dependent distributions such as Rayleigh and Rician by appropriately tuning it. The experimental results conform to the assumption regarding the noise distribution and noise parameters estimation capability of the model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-018-3542-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2019-04, Vol.44 (4), p.3425-3437
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2194643470
source Springer Nature
subjects Engineering
Humanities and Social Sciences
Image detection
Image restoration
Mathematical models
multidisciplinary
Noise
Noise reduction
Parameter estimation
Regularization
Research Article - Computer Engineering and Computer Science
Robustness (mathematics)
Science
Solvers
title Estimation of Noise Using Non-local Regularization Frameworks for Image Denoising and Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Noise%20Using%20Non-local%20Regularization%20Frameworks%20for%20Image%20Denoising%20and%20Analysis&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Jidesh,%20P.&rft.date=2019-04-01&rft.volume=44&rft.issue=4&rft.spage=3425&rft.epage=3437&rft.pages=3425-3437&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-018-3542-2&rft_dat=%3Cproquest_cross%3E2194643470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a391a4cc7af97b0cfeba1ef7154e222385d57a37dd23161d926aecf5fcf8e58e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194643470&rft_id=info:pmid/&rfr_iscdi=true