Loading…

BIGGR: Bringing Gradoop to Applications

Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach provid...

Full description

Saved in:
Bibliographic Details
Published in:Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V 2019-03, Vol.19 (1), p.51-60
Main Authors: Rostami, M. Ali, Kricke, Matthias, Peukert, Eric, Kühne, Stefan, Wilke, Moritz, Dienst, Steffen, Rahm, Erhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3
cites cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3
container_end_page 60
container_issue 1
container_start_page 51
container_title Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V
container_volume 19
creator Rostami, M. Ali
Kricke, Matthias
Peukert, Eric
Kühne, Stefan
Wilke, Moritz
Dienst, Steffen
Rahm, Erhard
description Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and gradoop . Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to gradoop and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.
doi_str_mv 10.1007/s13222-019-00306-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFD56iM0k2m3hri66FgiB6Dmk2kS21WZMW6r932xW8CQMzh--94T1CrhHuEKC6z8gZYxRQUwAOkh7OyAglAkWty_PTrShDyS7JJOc1QI9yoUs1IrezRV2_PhSz1G4_-inqZJsYu2IXi2nXbVpnd23c5ityEewm-8nvHpP3p8e3-TNdvtSL-XRJHUpxoOgr9ADeCdFwW6qAHJSohEelBVRBClBh5b32wa2cEqV1oSl5YyshfcCGj8nN4Nul-LX3eWfWcZ-2_UvDUAspBEfoKTZQLsWckw-mS-2nTd8GwRw7MUMnpg9qTp2YQy_igyh3x7A-_Vn_o_oBE-Zijw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644310</pqid></control><display><type>article</type><title>BIGGR: Bringing Gradoop to Applications</title><source>Springer Nature</source><creator>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</creator><creatorcontrib>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</creatorcontrib><description>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and gradoop . Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to gradoop and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</description><identifier>ISSN: 1618-2162</identifier><identifier>EISSN: 1610-1995</identifier><identifier>DOI: 10.1007/s13222-019-00306-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytics ; Bioinformatics ; Citation analysis ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Mining and Knowledge Discovery ; Data reduction ; Data Structures and Information Theory ; Database Management ; Distributed processing ; Graphs ; Information Storage and Retrieval ; IT in Business ; Open source software ; Schwerpunktbeitrag ; Social networks ; Source code ; Visualization</subject><ispartof>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V, 2019-03, Vol.19 (1), p.51-60</ispartof><rights>Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</citedby><cites>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</cites><orcidid>0000-0001-6154-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rostami, M. Ali</creatorcontrib><creatorcontrib>Kricke, Matthias</creatorcontrib><creatorcontrib>Peukert, Eric</creatorcontrib><creatorcontrib>Kühne, Stefan</creatorcontrib><creatorcontrib>Wilke, Moritz</creatorcontrib><creatorcontrib>Dienst, Steffen</creatorcontrib><creatorcontrib>Rahm, Erhard</creatorcontrib><title>BIGGR: Bringing Gradoop to Applications</title><title>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</title><addtitle>Datenbank Spektrum</addtitle><description>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and gradoop . Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to gradoop and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</description><subject>Analytics</subject><subject>Bioinformatics</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data reduction</subject><subject>Data Structures and Information Theory</subject><subject>Database Management</subject><subject>Distributed processing</subject><subject>Graphs</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Open source software</subject><subject>Schwerpunktbeitrag</subject><subject>Social networks</subject><subject>Source code</subject><subject>Visualization</subject><issn>1618-2162</issn><issn>1610-1995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFD56iM0k2m3hri66FgiB6Dmk2kS21WZMW6r932xW8CQMzh--94T1CrhHuEKC6z8gZYxRQUwAOkh7OyAglAkWty_PTrShDyS7JJOc1QI9yoUs1IrezRV2_PhSz1G4_-inqZJsYu2IXi2nXbVpnd23c5ityEewm-8nvHpP3p8e3-TNdvtSL-XRJHUpxoOgr9ADeCdFwW6qAHJSohEelBVRBClBh5b32wa2cEqV1oSl5YyshfcCGj8nN4Nul-LX3eWfWcZ-2_UvDUAspBEfoKTZQLsWckw-mS-2nTd8GwRw7MUMnpg9qTp2YQy_igyh3x7A-_Vn_o_oBE-Zijw</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Rostami, M. Ali</creator><creator>Kricke, Matthias</creator><creator>Peukert, Eric</creator><creator>Kühne, Stefan</creator><creator>Wilke, Moritz</creator><creator>Dienst, Steffen</creator><creator>Rahm, Erhard</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6154-4464</orcidid></search><sort><creationdate>20190306</creationdate><title>BIGGR: Bringing Gradoop to Applications</title><author>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytics</topic><topic>Bioinformatics</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data reduction</topic><topic>Data Structures and Information Theory</topic><topic>Database Management</topic><topic>Distributed processing</topic><topic>Graphs</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Open source software</topic><topic>Schwerpunktbeitrag</topic><topic>Social networks</topic><topic>Source code</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostami, M. Ali</creatorcontrib><creatorcontrib>Kricke, Matthias</creatorcontrib><creatorcontrib>Peukert, Eric</creatorcontrib><creatorcontrib>Kühne, Stefan</creatorcontrib><creatorcontrib>Wilke, Moritz</creatorcontrib><creatorcontrib>Dienst, Steffen</creatorcontrib><creatorcontrib>Rahm, Erhard</creatorcontrib><collection>CrossRef</collection><jtitle>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostami, M. Ali</au><au>Kricke, Matthias</au><au>Peukert, Eric</au><au>Kühne, Stefan</au><au>Wilke, Moritz</au><au>Dienst, Steffen</au><au>Rahm, Erhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIGGR: Bringing Gradoop to Applications</atitle><jtitle>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</jtitle><stitle>Datenbank Spektrum</stitle><date>2019-03-06</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>1618-2162</issn><eissn>1610-1995</eissn><abstract>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and gradoop . Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to gradoop and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13222-019-00306-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6154-4464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2162
ispartof Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V, 2019-03, Vol.19 (1), p.51-60
issn 1618-2162
1610-1995
language eng
recordid cdi_proquest_journals_2194644310
source Springer Nature
subjects Analytics
Bioinformatics
Citation analysis
Computer Science
Computer Systems Organization and Communication Networks
Data Mining and Knowledge Discovery
Data reduction
Data Structures and Information Theory
Database Management
Distributed processing
Graphs
Information Storage and Retrieval
IT in Business
Open source software
Schwerpunktbeitrag
Social networks
Source code
Visualization
title BIGGR: Bringing Gradoop to Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIGGR:%20Bringing%20Gradoop%20to%20Applications&rft.jtitle=Datenbank-Spektrum%20:%20Zeitschrift%20f%C3%BCr%20Datenbanktechnologie%20:%20Organ%20der%20Fachgruppe%20Datenbanken%20der%20Gesellschaft%20f%C3%BCr%20Informatik%20e.V&rft.au=Rostami,%20M.%20Ali&rft.date=2019-03-06&rft.volume=19&rft.issue=1&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=1618-2162&rft.eissn=1610-1995&rft_id=info:doi/10.1007/s13222-019-00306-x&rft_dat=%3Cproquest_cross%3E2194644310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194644310&rft_id=info:pmid/&rfr_iscdi=true