Loading…
BIGGR: Bringing Gradoop to Applications
Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach provid...
Saved in:
Published in: | Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V 2019-03, Vol.19 (1), p.51-60 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3 |
container_end_page | 60 |
container_issue | 1 |
container_start_page | 51 |
container_title | Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V |
container_volume | 19 |
creator | Rostami, M. Ali Kricke, Matthias Peukert, Eric Kühne, Stefan Wilke, Moritz Dienst, Steffen Rahm, Erhard |
description | Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and
gradoop
. Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to
gradoop
and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs. |
doi_str_mv | 10.1007/s13222-019-00306-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGr_gKcFD56iM0k2m3hri66FgiB6Dmk2kS21WZMW6r932xW8CQMzh--94T1CrhHuEKC6z8gZYxRQUwAOkh7OyAglAkWty_PTrShDyS7JJOc1QI9yoUs1IrezRV2_PhSz1G4_-inqZJsYu2IXi2nXbVpnd23c5ityEewm-8nvHpP3p8e3-TNdvtSL-XRJHUpxoOgr9ADeCdFwW6qAHJSohEelBVRBClBh5b32wa2cEqV1oSl5YyshfcCGj8nN4Nul-LX3eWfWcZ-2_UvDUAspBEfoKTZQLsWckw-mS-2nTd8GwRw7MUMnpg9qTp2YQy_igyh3x7A-_Vn_o_oBE-Zijw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644310</pqid></control><display><type>article</type><title>BIGGR: Bringing Gradoop to Applications</title><source>Springer Nature</source><creator>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</creator><creatorcontrib>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</creatorcontrib><description>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and
gradoop
. Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to
gradoop
and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</description><identifier>ISSN: 1618-2162</identifier><identifier>EISSN: 1610-1995</identifier><identifier>DOI: 10.1007/s13222-019-00306-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytics ; Bioinformatics ; Citation analysis ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Mining and Knowledge Discovery ; Data reduction ; Data Structures and Information Theory ; Database Management ; Distributed processing ; Graphs ; Information Storage and Retrieval ; IT in Business ; Open source software ; Schwerpunktbeitrag ; Social networks ; Source code ; Visualization</subject><ispartof>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V, 2019-03, Vol.19 (1), p.51-60</ispartof><rights>Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</citedby><cites>FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</cites><orcidid>0000-0001-6154-4464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rostami, M. Ali</creatorcontrib><creatorcontrib>Kricke, Matthias</creatorcontrib><creatorcontrib>Peukert, Eric</creatorcontrib><creatorcontrib>Kühne, Stefan</creatorcontrib><creatorcontrib>Wilke, Moritz</creatorcontrib><creatorcontrib>Dienst, Steffen</creatorcontrib><creatorcontrib>Rahm, Erhard</creatorcontrib><title>BIGGR: Bringing Gradoop to Applications</title><title>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</title><addtitle>Datenbank Spektrum</addtitle><description>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and
gradoop
. Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to
gradoop
and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</description><subject>Analytics</subject><subject>Bioinformatics</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data reduction</subject><subject>Data Structures and Information Theory</subject><subject>Database Management</subject><subject>Distributed processing</subject><subject>Graphs</subject><subject>Information Storage and Retrieval</subject><subject>IT in Business</subject><subject>Open source software</subject><subject>Schwerpunktbeitrag</subject><subject>Social networks</subject><subject>Source code</subject><subject>Visualization</subject><issn>1618-2162</issn><issn>1610-1995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGr_gKcFD56iM0k2m3hri66FgiB6Dmk2kS21WZMW6r932xW8CQMzh--94T1CrhHuEKC6z8gZYxRQUwAOkh7OyAglAkWty_PTrShDyS7JJOc1QI9yoUs1IrezRV2_PhSz1G4_-inqZJsYu2IXi2nXbVpnd23c5ityEewm-8nvHpP3p8e3-TNdvtSL-XRJHUpxoOgr9ADeCdFwW6qAHJSohEelBVRBClBh5b32wa2cEqV1oSl5YyshfcCGj8nN4Nul-LX3eWfWcZ-2_UvDUAspBEfoKTZQLsWckw-mS-2nTd8GwRw7MUMnpg9qTp2YQy_igyh3x7A-_Vn_o_oBE-Zijw</recordid><startdate>20190306</startdate><enddate>20190306</enddate><creator>Rostami, M. Ali</creator><creator>Kricke, Matthias</creator><creator>Peukert, Eric</creator><creator>Kühne, Stefan</creator><creator>Wilke, Moritz</creator><creator>Dienst, Steffen</creator><creator>Rahm, Erhard</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6154-4464</orcidid></search><sort><creationdate>20190306</creationdate><title>BIGGR: Bringing Gradoop to Applications</title><author>Rostami, M. Ali ; Kricke, Matthias ; Peukert, Eric ; Kühne, Stefan ; Wilke, Moritz ; Dienst, Steffen ; Rahm, Erhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytics</topic><topic>Bioinformatics</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data reduction</topic><topic>Data Structures and Information Theory</topic><topic>Database Management</topic><topic>Distributed processing</topic><topic>Graphs</topic><topic>Information Storage and Retrieval</topic><topic>IT in Business</topic><topic>Open source software</topic><topic>Schwerpunktbeitrag</topic><topic>Social networks</topic><topic>Source code</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostami, M. Ali</creatorcontrib><creatorcontrib>Kricke, Matthias</creatorcontrib><creatorcontrib>Peukert, Eric</creatorcontrib><creatorcontrib>Kühne, Stefan</creatorcontrib><creatorcontrib>Wilke, Moritz</creatorcontrib><creatorcontrib>Dienst, Steffen</creatorcontrib><creatorcontrib>Rahm, Erhard</creatorcontrib><collection>CrossRef</collection><jtitle>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostami, M. Ali</au><au>Kricke, Matthias</au><au>Peukert, Eric</au><au>Kühne, Stefan</au><au>Wilke, Moritz</au><au>Dienst, Steffen</au><au>Rahm, Erhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIGGR: Bringing Gradoop to Applications</atitle><jtitle>Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V</jtitle><stitle>Datenbank Spektrum</stitle><date>2019-03-06</date><risdate>2019</risdate><volume>19</volume><issue>1</issue><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>1618-2162</issn><eissn>1610-1995</eissn><abstract>Analyzing large amounts of graph data, e.g., from social networks or bioinformatics, has recently gained much attention. Unfortunately, tool support for handling and analyzing such graph data is still weak and scalability to large data volumes is often limited. We introduce the BIGGR approach providing a novel tool for the user-friendly and efficient analysis and visualization of Big Graph Data on top of the open-source software KNIME and
gradoop
. Users can visually program graph analytics workflows, execute them on top of the distributed processing framework Apache Flink and visualize large graphs within KNIME. For visualization, we apply visualization-driven data reduction techniques by pushing down sampling and layouting to
gradoop
and Apache Flink. We also discuss an initial application of the tool for the analysis of patent citation graphs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13222-019-00306-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6154-4464</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2162 |
ispartof | Datenbank-Spektrum : Zeitschrift für Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft für Informatik e.V, 2019-03, Vol.19 (1), p.51-60 |
issn | 1618-2162 1610-1995 |
language | eng |
recordid | cdi_proquest_journals_2194644310 |
source | Springer Nature |
subjects | Analytics Bioinformatics Citation analysis Computer Science Computer Systems Organization and Communication Networks Data Mining and Knowledge Discovery Data reduction Data Structures and Information Theory Database Management Distributed processing Graphs Information Storage and Retrieval IT in Business Open source software Schwerpunktbeitrag Social networks Source code Visualization |
title | BIGGR: Bringing Gradoop to Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIGGR:%20Bringing%20Gradoop%20to%20Applications&rft.jtitle=Datenbank-Spektrum%20:%20Zeitschrift%20f%C3%BCr%20Datenbanktechnologie%20:%20Organ%20der%20Fachgruppe%20Datenbanken%20der%20Gesellschaft%20f%C3%BCr%20Informatik%20e.V&rft.au=Rostami,%20M.%20Ali&rft.date=2019-03-06&rft.volume=19&rft.issue=1&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=1618-2162&rft.eissn=1610-1995&rft_id=info:doi/10.1007/s13222-019-00306-x&rft_dat=%3Cproquest_cross%3E2194644310%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c164x-1e71e00ec44d3a58f1308474e189407f6408fbee9efcbc845acfd53da746ef1d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2194644310&rft_id=info:pmid/&rfr_iscdi=true |