Loading…

Análisis comparativo de predicción dentro de bases de datos de cáncer: una aplicación de aprendizaje automático

The objective of this paper is to compare the performance of method prediction: i) Logistic regression, ii) K Nearest Neighbor, iii) K-means, iv) Random Forest, v) Support Vector Machine, vi) Linear Discriminant Analysis, vii) Gaussian Naive Bayes viii) Multilayer Perceptron, within a cancer databas...

Full description

Saved in:
Bibliographic Details
Published in:RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação 2019-01 (E17), p.113-122
Main Authors: Martínez-Toro, Gabriel Mauricio, Rico-Bautista, Dewar, Romero-Riaño, Efrén
Format: Article
Language:Spanish
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this paper is to compare the performance of method prediction: i) Logistic regression, ii) K Nearest Neighbor, iii) K-means, iv) Random Forest, v) Support Vector Machine, vi) Linear Discriminant Analysis, vii) Gaussian Naive Bayes viii) Multilayer Perceptron, within a cancer database. Logistic regression and artificial neural network classification models: A methodology review. Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning. Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning, (February), 1403-1405. https://doi.org/10.1109/CSCI.2016.269 Guyon, Isabelle, W, Eston, J., & Stephen Barnhill.
ISSN:1646-9895