Loading…
Análisis comparativo de predicción dentro de bases de datos de cáncer: una aplicación de aprendizaje automático
The objective of this paper is to compare the performance of method prediction: i) Logistic regression, ii) K Nearest Neighbor, iii) K-means, iv) Random Forest, v) Support Vector Machine, vi) Linear Discriminant Analysis, vii) Gaussian Naive Bayes viii) Multilayer Perceptron, within a cancer databas...
Saved in:
Published in: | RISTI : Revista Ibérica de Sistemas e Tecnologias de Informação 2019-01 (E17), p.113-122 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Spanish |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this paper is to compare the performance of method prediction: i) Logistic regression, ii) K Nearest Neighbor, iii) K-means, iv) Random Forest, v) Support Vector Machine, vi) Linear Discriminant Analysis, vii) Gaussian Naive Bayes viii) Multilayer Perceptron, within a cancer database. Logistic regression and artificial neural network classification models: A methodology review. Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning. Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning, (February), 1403-1405. https://doi.org/10.1109/CSCI.2016.269 Guyon, Isabelle, W, Eston, J., & Stephen Barnhill. |
---|---|
ISSN: | 1646-9895 |