Loading…
Hydrogen generation from hydrolysis of activated aluminum/organic fluoride/bismuth composites with high hydrogen generation rate and good aging resistance in air
Hydrogen has received more and more attention as a clean energy source. In this study, a series of activated Al-Bi, Al-organic fluoride (OF), Al-organic fluoride (OF)-Bi composites are synthesized by ball milling. The composites are characterized by scanning electron microscope (SEM), X-ray diffract...
Saved in:
Published in: | Energy (Oxford) 2019-03, Vol.170, p.159-169 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hydrogen has received more and more attention as a clean energy source. In this study, a series of activated Al-Bi, Al-organic fluoride (OF), Al-organic fluoride (OF)-Bi composites are synthesized by ball milling. The composites are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Their hydrogen generation properties are studied systematically in tap water with different initial reaction temperatures. The results demonstrate that the addition of organic fluoride can significantly accelerate the hydrogen generation in tap water, especially for the hydrogen generation rate. The sample Al-2.5%OF-7.5%Bi exhibits excellent hydrolysis performance among all the samples with the maximum hydrogen generation rate of 5622 mL min−1·g−1 at 50 °C. The excellent hydrolysis performance of Al-2.5%OF-7.5%Bi can be attributed to the formation of laminated structure in the interior of composite particles after adding organic fluoride. In addition, although the Al-OF-Bi composites can not avoid oxidation with oxygen in the air environment, the addition of can significantly reduce the reaction between the internal aluminum and water steam in air environment as the existence of hydrophobic fluorine atoms.
•Al-organic fluoride-Bi composites are prepared by ball milling.•Organic fluoride can accelerate the hydrogen generation rate of Al in tap water.•Al-2.5%OF-7.5%Bi exhibits excellent hydrolysis performance.•Organic fluoride can reduce the reaction between the Al and water steam in the air. |
---|---|
ISSN: | 0360-5442 1873-6785 |
DOI: | 10.1016/j.energy.2018.12.135 |