Loading…
Anonymous and fault-tolerant shared-memory computing
The vast majority of papers on distributed computing assume that processes are assigned unique identifiers before computation begins. But is this assumption necessary? What if processes do not have unique identifiers or do not wish to divulge them for reasons of privacy? We consider asynchronous sha...
Saved in:
Published in: | Distributed computing 2007-10, Vol.20 (3), p.165-177 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The vast majority of papers on distributed computing assume that processes are assigned unique identifiers before computation begins. But is this assumption necessary? What if processes do not have unique identifiers or do not wish to divulge them for reasons of privacy? We consider asynchronous shared-memory systems that are anonymous. The shared memory contains only the most common type of shared objects, read/write registers. We investigate, for the first time, what can be implemented deterministically in this model when processes can fail. We give anonymous algorithms for some fundamental problems: time-stamping, snapshots and consensus. Our solutions to the first two are wait-free and the third is obstruction-free. We also show that a shared object has an obstruction-free implementation if and only if it satisfies a simple property called idempotence. To prove the sufficiency of this condition, we give a universal construction that implements any idempotent object. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0178-2770 1432-0452 |
DOI: | 10.1007/s00446-007-0042-0 |