Loading…

Anonymous and fault-tolerant shared-memory computing

The vast majority of papers on distributed computing assume that processes are assigned unique identifiers before computation begins. But is this assumption necessary? What if processes do not have unique identifiers or do not wish to divulge them for reasons of privacy? We consider asynchronous sha...

Full description

Saved in:
Bibliographic Details
Published in:Distributed computing 2007-10, Vol.20 (3), p.165-177
Main Authors: Guerraoui, Rachid, Ruppert, Eric
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vast majority of papers on distributed computing assume that processes are assigned unique identifiers before computation begins. But is this assumption necessary? What if processes do not have unique identifiers or do not wish to divulge them for reasons of privacy? We consider asynchronous shared-memory systems that are anonymous. The shared memory contains only the most common type of shared objects, read/write registers. We investigate, for the first time, what can be implemented deterministically in this model when processes can fail. We give anonymous algorithms for some fundamental problems: time-stamping, snapshots and consensus. Our solutions to the first two are wait-free and the third is obstruction-free. We also show that a shared object has an obstruction-free implementation if and only if it satisfies a simple property called idempotence. To prove the sufficiency of this condition, we give a universal construction that implements any idempotent object. [PUBLICATION ABSTRACT]
ISSN:0178-2770
1432-0452
DOI:10.1007/s00446-007-0042-0