Loading…

Experimental investigation of solar water heater integrated with a nanocomposite phase change material

This present work contributes to the improvement in thermal energy storage capacity of an all-glass evacuated tube solar water heater by integrating it with a phase change material (PCM) and with a nanocomposite phase change material (NCPCM). Paraffin wax as PCM and a nanocomposite of paraffin wax w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2019-04, Vol.136 (1), p.121-132
Main Authors: Manoj Kumar, P, Mylsamy, K
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This present work contributes to the improvement in thermal energy storage capacity of an all-glass evacuated tube solar water heater by integrating it with a phase change material (PCM) and with a nanocomposite phase change material (NCPCM). Paraffin wax as PCM and a nanocomposite of paraffin wax with 1.0 mass% SiO.sub.2 nanoparticles as NCPCM had been used during the experiments. The results were acquired through the real-time experimental measurements on the all-glass evacuated tube solar water heater integrated with built-in thermal energy storage, functioning under thermosyphonic flow. Three different cases, namely, without PCM, with PCM, and with NCPCM, were considered. The testing procedure involved the observation of total temperature variation in the tank water from 6.00 a.m. to 6.00 a.m. of next morning. Meanwhile, the water was completely renewed for every 12 h. The system performance was studied using energy efficiency, exergy efficiency, and temperature of hot water supply during the next morning, for all the three cases. The investigation exemplifies that the tank water temperature at 6.00 a.m. after one complete day of operation was notably improved to 37 °C and 39.6 °C, respectively, with PCM and NCPCM, whereas it was 33.1 °C for the case without PCM. The energy efficiencies for the three cases were found to be 58.74%, 69.62%, and 74.79%, respectively, and exergy efficiencies of the system were determined as 19.6%, 22.0%, and 24.6%, respectively, for without PCM, with PCM, and with NCPCM. Also, it was evidenced that the thermal conductivity of paraffin wax was considerably increased to 22.78% through the diffusion of SiO.sub.2 nanoparticles. Put together, this indicates that the incorporation of PCM and explicitly the dispersion of SiO.sub.2 nanoparticles in NCPCM had been significantly improved the thermal performance of the system.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-018-7937-9