Loading…

Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation

Several grass and broadleaf weed species around the world have evolved multiple-herbicide resistance at alarmingly increasing rates. Research on the biochemical and molecular resistance mechanisms of multiple-resistant weed populations indicate a prevalence of herbicide metabolism catalyzed by enzym...

Full description

Saved in:
Bibliographic Details
Published in:Weed science 2019-03, Vol.67 (2), p.149-175
Main Authors: Nandula, Vijay K., Riechers, Dean E., Ferhatoglu, Yurdagul, Barrett, Michael, Duke, Stephen O., Dayan, Franck E., Goldberg-Cavalleri, Alina, TĂ©tard-Jones, Catherine, Wortley, David J., Onkokesung, Nawaporn, Brazier-Hicks, Melissa, Edwards, Robert, Gaines, Todd, Iwakami, Satoshi, Jugulam, Mithila, Ma, Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several grass and broadleaf weed species around the world have evolved multiple-herbicide resistance at alarmingly increasing rates. Research on the biochemical and molecular resistance mechanisms of multiple-resistant weed populations indicate a prevalence of herbicide metabolism catalyzed by enzyme systems such as cytochrome P450 monooxygenases and glutathione S-transferases and, to a lesser extent, by glucosyl transferases. A symposium was conducted to gain an understanding of the current state of research on metabolic resistance mechanisms in weed species that pose major management problems around the world. These topics, as well as future directions of investigations that were identified in the symposium, are summarized herein. In addition, the latest information on selected topics such as the role of safeners in inducing crop tolerance to herbicides, selectivity to clomazone, glyphosate metabolism in crops and weeds, and bioactivation of natural molecules is reviewed.
ISSN:0043-1745
1550-2759
1550-2759
DOI:10.1017/wsc.2018.88