Loading…
Identificación de patrones de variabilidad climática a partir de análisis de componentes principales, Fourier y clúster k-medias
Contexto: Una investigación mediante el Análisis de Componentes Principales (APC) se llevó a cabo para identificar la variabilidad y los patrones climáticos de dos importantes ciudades del Caribe Colombiano. Método: Para el desarrollo de este trabajo se empleó información satelital de resolución tem...
Saved in:
Published in: | Tecnura 2016-10, Vol.20 (50), p.55 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | Spanish |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Contexto: Una investigación mediante el Análisis de Componentes Principales (APC) se llevó a cabo para identificar la variabilidad y los patrones climáticos de dos importantes ciudades del Caribe Colombiano. Método: Para el desarrollo de este trabajo se empleó información satelital de resolución temporal trihoraria de 35 años (1980-2014) y se efectuó escalamiento espacial mediante información in situ para dos ciudades en Colombia (Cartagena y Barraquilla). Resultados: Los resultados de correlación superiores al 80% permitieron efectuar un adecuado ajuste para el análisis de información de velocidad de viento y temperatura ambiente. Para cada una de las 4 series de tiempo se construyó una matriz de empotramiento y de desfase con el objetivo de aplicar análisis de componentes principales o conocido también como análisis espectral singular. Fueron identificados los componentes principales cuya representatividad es inmediatamente superior al 70% para la temperatura y para el viento en ambas ciudades. Se efectuó un análisis de Fourier a la velocidad del viento y la temperatura y se detectaron modos de oscilación similares a los modos de oscilación (componentes principales) detectados mediante el APC. Conclusiones: Se encontró una variabilidad diurna para temperatura, y variabilidad diurna del viento para la ciudad de Cartagena, explicada por las brisas de mar y de tierra. Adicionalmente se encontró variabilidad trimestral asociada a las oscilaciones Maden Julian, variabilidades semestrales, anuales, y variabilidad de 6 años relacionada con el fenómeno del Niño. Finalmente mediante análisis de clúster se identificaron dos patrones climáticos en las zonas de estudio. Context: Is achieved a research through Principal Component Analysis (PCA) for determining the variability and climate patterns of two important cities in the Colombia Caribbean. Method: This research used satellite data with three hourly resolution contained in a 35 year data set (1980 to 2014), and a spatial scaling was performed using information related to Cartagena and Barranquilla cities, located in the north of Colombia. Results: The correlation results, above 80 %, show an appropriate adjustment for the information analysis of wind speed and temperature. Time lag matrixes were built for the time series with the aim of applying the Principal Component Analysis (PCA), known as Singular Spectrum Analysis. The main components were identified, which represent more than 70% of the temperature and t |
---|---|
ISSN: | 0123-921X 2248-7638 |
DOI: | 10.14483/udistrital.jour.tecnura.2016.4.a04 |