Loading…

Shear‐displacement diagram of steel plate shear walls with precompression from adjacent frame columns

Summary An analytical model of the unstiffened steel plate shear wall (SPSW) considering precompression from the adjacent frame columns is proposed and experimentally verified. First, the distribution and transferring of the gravity loads between boundary columns and the infill steel plate was propo...

Full description

Saved in:
Bibliographic Details
Published in:The structural design of tall and special buildings 2019-04, Vol.28 (5), p.n/a
Main Authors: Lv, Yang, Li, Ling, Wu, Di, Chen, Yu, Li, Zhong‐xian, Chouw, Nawawi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary An analytical model of the unstiffened steel plate shear wall (SPSW) considering precompression from the adjacent frame columns is proposed and experimentally verified. First, the distribution and transferring of the gravity loads between boundary columns and the infill steel plate was proposed. Second, the shear‐displacement diagram of the SPSW under compression–shear interaction was obtained, and to further consider the global bending deformation, the shear‐displacement diagram of the SPSW under compression–shear–bending interaction was obtained. Third, the load‐carrying capacities and deformations at the state of elastic buckling of the infill steel plate, the yield of Zones I and III, the yield of Zone II, and the yield of the boundary frame were presented. Finally, cyclic loading test on four scaled one story single bay unstiffened SPSWs under different axial forces at the top of the columns was carried out to verify the proposed analytical model. Shear‐displacement relationship, shear capacity, and envelope curves of the specimens were compared with the predicted values. Results indicate that the proposed analytical model can reasonably predict the decrease of the shear load capacity and stiffness of the SPSWs due to the existence of the axial load at the boundary columns.
ISSN:1541-7794
1541-7808
DOI:10.1002/tal.1585