Loading…

MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification

The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on sustainable energy 2019-04, Vol.10 (2), p.514-521
Main Authors: Yan, Ke, Du, Yang, Ren, Zixiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223
cites cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223
container_end_page 521
container_issue 2
container_start_page 514
container_title IEEE transactions on sustainable energy
container_volume 10
creator Yan, Ke
Du, Yang
Ren, Zixiao
description The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.
doi_str_mv 10.1109/TSTE.2018.2834415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196853389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8356136</ieee_id><sourcerecordid>2196853389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6axzySpdaqhUoHOq5DZppgyrSpSUapv96MU3o39x4451z4ALjFaIox4g_VuppPCcJsShhNU5xdgBHmKU8oosXl-Sb8Gky836I4lNKcohHYvpdlBUvlQudqGYzdw9UhmJ35HYTVsPy0wX7bNkjTwNL-KAfXRx_UzsMn6dUGRtvattLBhXNyY-S-UfBZBglnrfTeaNP8d92AKy1bryanPQYfL_Nq9pYsV6-L2eMyaQinIWEFQQWhRZ6nuGYZLXAtpe6lZCxjmBCisW7SutgojogmUjc5R3XNURo1oWNwP_QenP3qlA9iazu3jy8FwTyPlZTx6MKDq3HWe6e0ODizk-4oMBI9VdFTFT1VcaIaM3dDxiilzn5GsxxHmn-8wXLC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196853389</pqid></control><display><type>article</type><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><source>IEEE Xplore (Online service)</source><creator>Yan, Ke ; Du, Yang ; Ren, Zixiao</creator><creatorcontrib>Yan, Ke ; Du, Yang ; Ren, Zixiao</creatorcontrib><description>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2018.2834415</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>classification ; Clouds ; Deserts ; Irradiance ; machine learning ; Maximum power point trackers ; Maximum power point tracking (MPPT) ; Maximum power tracking ; Optimization ; Perturbation ; Perturbation methods ; Photovoltaics ; PV power system ; Sea measurements ; Solar power ; support vector machine (SVM) ; Support vector machines ; Testing ; Training</subject><ispartof>IEEE transactions on sustainable energy, 2019-04, Vol.10 (2), p.514-521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</citedby><cites>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</cites><orcidid>0000-0002-1611-6636 ; 0000-0002-9023-4665 ; 0000-0003-2254-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8356136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Du, Yang</creatorcontrib><creatorcontrib>Ren, Zixiao</creatorcontrib><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</description><subject>classification</subject><subject>Clouds</subject><subject>Deserts</subject><subject>Irradiance</subject><subject>machine learning</subject><subject>Maximum power point trackers</subject><subject>Maximum power point tracking (MPPT)</subject><subject>Maximum power tracking</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Photovoltaics</subject><subject>PV power system</subject><subject>Sea measurements</subject><subject>Solar power</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Training</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6axzySpdaqhUoHOq5DZppgyrSpSUapv96MU3o39x4451z4ALjFaIox4g_VuppPCcJsShhNU5xdgBHmKU8oosXl-Sb8Gky836I4lNKcohHYvpdlBUvlQudqGYzdw9UhmJ35HYTVsPy0wX7bNkjTwNL-KAfXRx_UzsMn6dUGRtvattLBhXNyY-S-UfBZBglnrfTeaNP8d92AKy1bryanPQYfL_Nq9pYsV6-L2eMyaQinIWEFQQWhRZ6nuGYZLXAtpe6lZCxjmBCisW7SutgojogmUjc5R3XNURo1oWNwP_QenP3qlA9iazu3jy8FwTyPlZTx6MKDq3HWe6e0ODizk-4oMBI9VdFTFT1VcaIaM3dDxiilzn5GsxxHmn-8wXLC</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Yan, Ke</creator><creator>Du, Yang</creator><creator>Ren, Zixiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1611-6636</orcidid><orcidid>https://orcid.org/0000-0002-9023-4665</orcidid><orcidid>https://orcid.org/0000-0003-2254-778X</orcidid></search><sort><creationdate>20190401</creationdate><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><author>Yan, Ke ; Du, Yang ; Ren, Zixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>classification</topic><topic>Clouds</topic><topic>Deserts</topic><topic>Irradiance</topic><topic>machine learning</topic><topic>Maximum power point trackers</topic><topic>Maximum power point tracking (MPPT)</topic><topic>Maximum power tracking</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Photovoltaics</topic><topic>PV power system</topic><topic>Sea measurements</topic><topic>Solar power</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Du, Yang</creatorcontrib><creatorcontrib>Ren, Zixiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke</au><au>Du, Yang</au><au>Ren, Zixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>10</volume><issue>2</issue><spage>514</spage><epage>521</epage><pages>514-521</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2018.2834415</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1611-6636</orcidid><orcidid>https://orcid.org/0000-0002-9023-4665</orcidid><orcidid>https://orcid.org/0000-0003-2254-778X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3029
ispartof IEEE transactions on sustainable energy, 2019-04, Vol.10 (2), p.514-521
issn 1949-3029
1949-3037
language eng
recordid cdi_proquest_journals_2196853389
source IEEE Xplore (Online service)
subjects classification
Clouds
Deserts
Irradiance
machine learning
Maximum power point trackers
Maximum power point tracking (MPPT)
Maximum power tracking
Optimization
Perturbation
Perturbation methods
Photovoltaics
PV power system
Sea measurements
Solar power
support vector machine (SVM)
Support vector machines
Testing
Training
title MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MPPT%20Perturbation%20Optimization%20of%20Photovoltaic%20Power%20Systems%20Based%20on%20Solar%20Irradiance%20Data%20Classification&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Yan,%20Ke&rft.date=2019-04-01&rft.volume=10&rft.issue=2&rft.spage=514&rft.epage=521&rft.pages=514-521&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2018.2834415&rft_dat=%3Cproquest_cross%3E2196853389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196853389&rft_id=info:pmid/&rft_ieee_id=8356136&rfr_iscdi=true