Loading…
MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification
The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a...
Saved in:
Published in: | IEEE transactions on sustainable energy 2019-04, Vol.10 (2), p.514-521 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223 |
container_end_page | 521 |
container_issue | 2 |
container_start_page | 514 |
container_title | IEEE transactions on sustainable energy |
container_volume | 10 |
creator | Yan, Ke Du, Yang Ren, Zixiao |
description | The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types. |
doi_str_mv | 10.1109/TSTE.2018.2834415 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2196853389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8356136</ieee_id><sourcerecordid>2196853389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6axzySpdaqhUoHOq5DZppgyrSpSUapv96MU3o39x4451z4ALjFaIox4g_VuppPCcJsShhNU5xdgBHmKU8oosXl-Sb8Gky836I4lNKcohHYvpdlBUvlQudqGYzdw9UhmJ35HYTVsPy0wX7bNkjTwNL-KAfXRx_UzsMn6dUGRtvattLBhXNyY-S-UfBZBglnrfTeaNP8d92AKy1bryanPQYfL_Nq9pYsV6-L2eMyaQinIWEFQQWhRZ6nuGYZLXAtpe6lZCxjmBCisW7SutgojogmUjc5R3XNURo1oWNwP_QenP3qlA9iazu3jy8FwTyPlZTx6MKDq3HWe6e0ODizk-4oMBI9VdFTFT1VcaIaM3dDxiilzn5GsxxHmn-8wXLC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196853389</pqid></control><display><type>article</type><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><source>IEEE Xplore (Online service)</source><creator>Yan, Ke ; Du, Yang ; Ren, Zixiao</creator><creatorcontrib>Yan, Ke ; Du, Yang ; Ren, Zixiao</creatorcontrib><description>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</description><identifier>ISSN: 1949-3029</identifier><identifier>EISSN: 1949-3037</identifier><identifier>DOI: 10.1109/TSTE.2018.2834415</identifier><identifier>CODEN: ITSEAJ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>classification ; Clouds ; Deserts ; Irradiance ; machine learning ; Maximum power point trackers ; Maximum power point tracking (MPPT) ; Maximum power tracking ; Optimization ; Perturbation ; Perturbation methods ; Photovoltaics ; PV power system ; Sea measurements ; Solar power ; support vector machine (SVM) ; Support vector machines ; Testing ; Training</subject><ispartof>IEEE transactions on sustainable energy, 2019-04, Vol.10 (2), p.514-521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</citedby><cites>FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</cites><orcidid>0000-0002-1611-6636 ; 0000-0002-9023-4665 ; 0000-0003-2254-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8356136$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Du, Yang</creatorcontrib><creatorcontrib>Ren, Zixiao</creatorcontrib><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><title>IEEE transactions on sustainable energy</title><addtitle>TSTE</addtitle><description>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</description><subject>classification</subject><subject>Clouds</subject><subject>Deserts</subject><subject>Irradiance</subject><subject>machine learning</subject><subject>Maximum power point trackers</subject><subject>Maximum power point tracking (MPPT)</subject><subject>Maximum power tracking</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Photovoltaics</subject><subject>PV power system</subject><subject>Sea measurements</subject><subject>Solar power</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Testing</subject><subject>Training</subject><issn>1949-3029</issn><issn>1949-3037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWGp_gLgJuJ6axzySpdaqhUoHOq5DZppgyrSpSUapv96MU3o39x4451z4ALjFaIox4g_VuppPCcJsShhNU5xdgBHmKU8oosXl-Sb8Gky836I4lNKcohHYvpdlBUvlQudqGYzdw9UhmJ35HYTVsPy0wX7bNkjTwNL-KAfXRx_UzsMn6dUGRtvattLBhXNyY-S-UfBZBglnrfTeaNP8d92AKy1bryanPQYfL_Nq9pYsV6-L2eMyaQinIWEFQQWhRZ6nuGYZLXAtpe6lZCxjmBCisW7SutgojogmUjc5R3XNURo1oWNwP_QenP3qlA9iazu3jy8FwTyPlZTx6MKDq3HWe6e0ODizk-4oMBI9VdFTFT1VcaIaM3dDxiilzn5GsxxHmn-8wXLC</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Yan, Ke</creator><creator>Du, Yang</creator><creator>Ren, Zixiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1611-6636</orcidid><orcidid>https://orcid.org/0000-0002-9023-4665</orcidid><orcidid>https://orcid.org/0000-0003-2254-778X</orcidid></search><sort><creationdate>20190401</creationdate><title>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</title><author>Yan, Ke ; Du, Yang ; Ren, Zixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>classification</topic><topic>Clouds</topic><topic>Deserts</topic><topic>Irradiance</topic><topic>machine learning</topic><topic>Maximum power point trackers</topic><topic>Maximum power point tracking (MPPT)</topic><topic>Maximum power tracking</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Photovoltaics</topic><topic>PV power system</topic><topic>Sea measurements</topic><topic>Solar power</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Testing</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke</creatorcontrib><creatorcontrib>Du, Yang</creatorcontrib><creatorcontrib>Ren, Zixiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>IEEE transactions on sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke</au><au>Du, Yang</au><au>Ren, Zixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification</atitle><jtitle>IEEE transactions on sustainable energy</jtitle><stitle>TSTE</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>10</volume><issue>2</issue><spage>514</spage><epage>521</epage><pages>514-521</pages><issn>1949-3029</issn><eissn>1949-3037</eissn><coden>ITSEAJ</coden><abstract>The tracking accuracy and speed are two main issues for the fixed step perturb-and-observe maximum power point tracking (MPPT) method. This study proposes a novel solution to balance the tradeoff between performance and cost of the MPPT method. The perturbation step size is determined off-line for a specific location based on the local irradiance data. The support vector machine is employed to automatically classify the desert or coastal locations using historical irradiance data. The perturbation step size is optimized for better system performance without increasing the control complexity. Simulations and experiments have been carried out to verify the effectiveness and superiority of the proposed method over existing approaches. The experimental results show a 5.8% energy generation increment by selecting optimal step sizes for different irradiance data types.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSTE.2018.2834415</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1611-6636</orcidid><orcidid>https://orcid.org/0000-0002-9023-4665</orcidid><orcidid>https://orcid.org/0000-0003-2254-778X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3029 |
ispartof | IEEE transactions on sustainable energy, 2019-04, Vol.10 (2), p.514-521 |
issn | 1949-3029 1949-3037 |
language | eng |
recordid | cdi_proquest_journals_2196853389 |
source | IEEE Xplore (Online service) |
subjects | classification Clouds Deserts Irradiance machine learning Maximum power point trackers Maximum power point tracking (MPPT) Maximum power tracking Optimization Perturbation Perturbation methods Photovoltaics PV power system Sea measurements Solar power support vector machine (SVM) Support vector machines Testing Training |
title | MPPT Perturbation Optimization of Photovoltaic Power Systems Based on Solar Irradiance Data Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MPPT%20Perturbation%20Optimization%20of%20Photovoltaic%20Power%20Systems%20Based%20on%20Solar%20Irradiance%20Data%20Classification&rft.jtitle=IEEE%20transactions%20on%20sustainable%20energy&rft.au=Yan,%20Ke&rft.date=2019-04-01&rft.volume=10&rft.issue=2&rft.spage=514&rft.epage=521&rft.pages=514-521&rft.issn=1949-3029&rft.eissn=1949-3037&rft.coden=ITSEAJ&rft_id=info:doi/10.1109/TSTE.2018.2834415&rft_dat=%3Cproquest_cross%3E2196853389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-872072376641b85371baaf7664a88581222f1fc4b7de902f2afc690bb90490223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196853389&rft_id=info:pmid/&rft_ieee_id=8356136&rfr_iscdi=true |