Loading…

A Brain-Robot Interaction System by Fusing Human and Machine Intelligence

This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intell...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2019-03, Vol.27 (3), p.533-542
Main Authors: Mao, Xiaoqian, Li, Wei, Lei, Chengwei, Jin, Jing, Duan, Feng, Chen, Sherry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3
cites cdi_FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3
container_end_page 542
container_issue 3
container_start_page 533
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 27
creator Mao, Xiaoqian
Li, Wei
Lei, Chengwei
Jin, Jing
Duan, Feng
Chen, Sherry
description This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intelligence combining a fuzzy-logic-based image processing algorithm with multi-sensor fusion technology. A subject selects an object of interest via P300, and the classification algorithm transfers the corresponding parameters to an improved fuzzy color extractor for object extraction. A central vision tracking strategy automatically guides the NAO humanoid robot to the destination selected by the subject intentions represented by brainwaves. During this process, human supervises the system at high level, while machine intelligence assists the robot in accomplishing tasks by analyzing image feeding back from the camera, distance monitoring using out-of-gauge alarms from sonars, and collision detecting from bumper sensors. In this scenario, the SSVEP takes over the situations in which the machine intelligence cannot make decisions. The experimental results show that the subjects can control the robot to a destination of interest, with fewer commands than only using a brain-robot interface. Therefore, the fusion of human and machine intelligence greatly alleviates the brain load and enhances the robot executive efficiency of a brain-robot interaction system.
doi_str_mv 10.1109/TNSRE.2019.2897323
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2196875151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8633982</ieee_id><sourcerecordid>2179516643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0Eorx-ACQUiQ2blLHHseMlVC1U4iG1ZR05jl2CGgfiZNG_J33AgtWMNOdejQ4hlxSGlIK6W7zOZ-MhA6qGLFUSGR6QE5okaQyMwuFmRx5zZDAgpyF8AlApEnlMBgiSCuB4Qqb30UOjSx_P6rxuo6lvbaNNW9Y-mq9Da6soX0eTLpR-GT11lfaR9kX0os1H6e0WX63KpfXGnpMjp1fBXuznGXmfjBejp_j57XE6un-ODSa0jS06BhoMBVNIJ4RKjQGXFwwSyQqWo-S5QCeVwrxwOafAOdcMEQxw5wyekdtd71dTf3c2tFlVBtO_ob2tu5AxKlVCheDYozf_0M-6a3z_XU8pkcqEJrSn2I4yTR1CY1321ZSVbtYZhWwjOtuKzjais73oPnS9r-7yyhZ_kV-zPXC1A0pr7d85FYgqZfgDcJKADQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196875151</pqid></control><display><type>article</type><title>A Brain-Robot Interaction System by Fusing Human and Machine Intelligence</title><source>Alma/SFX Local Collection</source><creator>Mao, Xiaoqian ; Li, Wei ; Lei, Chengwei ; Jin, Jing ; Duan, Feng ; Chen, Sherry</creator><creatorcontrib>Mao, Xiaoqian ; Li, Wei ; Lei, Chengwei ; Jin, Jing ; Duan, Feng ; Chen, Sherry</creatorcontrib><description>This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intelligence combining a fuzzy-logic-based image processing algorithm with multi-sensor fusion technology. A subject selects an object of interest via P300, and the classification algorithm transfers the corresponding parameters to an improved fuzzy color extractor for object extraction. A central vision tracking strategy automatically guides the NAO humanoid robot to the destination selected by the subject intentions represented by brainwaves. During this process, human supervises the system at high level, while machine intelligence assists the robot in accomplishing tasks by analyzing image feeding back from the camera, distance monitoring using out-of-gauge alarms from sonars, and collision detecting from bumper sensors. In this scenario, the SSVEP takes over the situations in which the machine intelligence cannot make decisions. The experimental results show that the subjects can control the robot to a destination of interest, with fewer commands than only using a brain-robot interface. Therefore, the fusion of human and machine intelligence greatly alleviates the brain load and enhances the robot executive efficiency of a brain-robot interaction system.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2019.2897323</identifier><identifier>PMID: 30716043</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Brain ; Brain robot interaction ; Brain-Computer Interfaces ; Cameras ; Electroencephalography ; Event-related potentials ; Event-Related Potentials, P300 - physiology ; Evoked Potentials, Somatosensory - physiology ; Fuzzy Logic ; human intelligence ; Humanoid ; Humanoid robots ; Humans ; Hybrid systems ; Image processing ; Image Processing, Computer-Assisted ; improved fuzzy color extractor (IFCE) ; Intelligence ; Machine intelligence ; multi-sensor fusion ; Multisensor fusion ; Robot control ; Robot sensing systems ; Robotics - methods ; Robots ; Task analysis ; Vision, Ocular - physiology ; Visual evoked potentials</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2019-03, Vol.27 (3), p.533-542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3</citedby><cites>FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3</cites><orcidid>0000-0002-2179-2460 ; 0000-0003-1418-0201 ; 0000-0002-7332-0537 ; 0000-0003-1778-2523 ; 0000-0001-5559-7295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30716043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Xiaoqian</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Lei, Chengwei</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Duan, Feng</creatorcontrib><creatorcontrib>Chen, Sherry</creatorcontrib><title>A Brain-Robot Interaction System by Fusing Human and Machine Intelligence</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intelligence combining a fuzzy-logic-based image processing algorithm with multi-sensor fusion technology. A subject selects an object of interest via P300, and the classification algorithm transfers the corresponding parameters to an improved fuzzy color extractor for object extraction. A central vision tracking strategy automatically guides the NAO humanoid robot to the destination selected by the subject intentions represented by brainwaves. During this process, human supervises the system at high level, while machine intelligence assists the robot in accomplishing tasks by analyzing image feeding back from the camera, distance monitoring using out-of-gauge alarms from sonars, and collision detecting from bumper sensors. In this scenario, the SSVEP takes over the situations in which the machine intelligence cannot make decisions. The experimental results show that the subjects can control the robot to a destination of interest, with fewer commands than only using a brain-robot interface. Therefore, the fusion of human and machine intelligence greatly alleviates the brain load and enhances the robot executive efficiency of a brain-robot interaction system.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Brain</subject><subject>Brain robot interaction</subject><subject>Brain-Computer Interfaces</subject><subject>Cameras</subject><subject>Electroencephalography</subject><subject>Event-related potentials</subject><subject>Event-Related Potentials, P300 - physiology</subject><subject>Evoked Potentials, Somatosensory - physiology</subject><subject>Fuzzy Logic</subject><subject>human intelligence</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>Humans</subject><subject>Hybrid systems</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted</subject><subject>improved fuzzy color extractor (IFCE)</subject><subject>Intelligence</subject><subject>Machine intelligence</subject><subject>multi-sensor fusion</subject><subject>Multisensor fusion</subject><subject>Robot control</subject><subject>Robot sensing systems</subject><subject>Robotics - methods</subject><subject>Robots</subject><subject>Task analysis</subject><subject>Vision, Ocular - physiology</subject><subject>Visual evoked potentials</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0Eorx-ACQUiQ2blLHHseMlVC1U4iG1ZR05jl2CGgfiZNG_J33AgtWMNOdejQ4hlxSGlIK6W7zOZ-MhA6qGLFUSGR6QE5okaQyMwuFmRx5zZDAgpyF8AlApEnlMBgiSCuB4Qqb30UOjSx_P6rxuo6lvbaNNW9Y-mq9Da6soX0eTLpR-GT11lfaR9kX0os1H6e0WX63KpfXGnpMjp1fBXuznGXmfjBejp_j57XE6un-ODSa0jS06BhoMBVNIJ4RKjQGXFwwSyQqWo-S5QCeVwrxwOafAOdcMEQxw5wyekdtd71dTf3c2tFlVBtO_ob2tu5AxKlVCheDYozf_0M-6a3z_XU8pkcqEJrSn2I4yTR1CY1321ZSVbtYZhWwjOtuKzjais73oPnS9r-7yyhZ_kV-zPXC1A0pr7d85FYgqZfgDcJKADQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Mao, Xiaoqian</creator><creator>Li, Wei</creator><creator>Lei, Chengwei</creator><creator>Jin, Jing</creator><creator>Duan, Feng</creator><creator>Chen, Sherry</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2179-2460</orcidid><orcidid>https://orcid.org/0000-0003-1418-0201</orcidid><orcidid>https://orcid.org/0000-0002-7332-0537</orcidid><orcidid>https://orcid.org/0000-0003-1778-2523</orcidid><orcidid>https://orcid.org/0000-0001-5559-7295</orcidid></search><sort><creationdate>20190301</creationdate><title>A Brain-Robot Interaction System by Fusing Human and Machine Intelligence</title><author>Mao, Xiaoqian ; Li, Wei ; Lei, Chengwei ; Jin, Jing ; Duan, Feng ; Chen, Sherry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Brain</topic><topic>Brain robot interaction</topic><topic>Brain-Computer Interfaces</topic><topic>Cameras</topic><topic>Electroencephalography</topic><topic>Event-related potentials</topic><topic>Event-Related Potentials, P300 - physiology</topic><topic>Evoked Potentials, Somatosensory - physiology</topic><topic>Fuzzy Logic</topic><topic>human intelligence</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>Humans</topic><topic>Hybrid systems</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted</topic><topic>improved fuzzy color extractor (IFCE)</topic><topic>Intelligence</topic><topic>Machine intelligence</topic><topic>multi-sensor fusion</topic><topic>Multisensor fusion</topic><topic>Robot control</topic><topic>Robot sensing systems</topic><topic>Robotics - methods</topic><topic>Robots</topic><topic>Task analysis</topic><topic>Vision, Ocular - physiology</topic><topic>Visual evoked potentials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Xiaoqian</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Lei, Chengwei</creatorcontrib><creatorcontrib>Jin, Jing</creatorcontrib><creatorcontrib>Duan, Feng</creatorcontrib><creatorcontrib>Chen, Sherry</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Xiaoqian</au><au>Li, Wei</au><au>Lei, Chengwei</au><au>Jin, Jing</au><au>Duan, Feng</au><au>Chen, Sherry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Brain-Robot Interaction System by Fusing Human and Machine Intelligence</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>533</spage><epage>542</epage><pages>533-542</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>This paper presents a new brain-robot interaction system by fusing human and machine intelligence to improve the real-time control performance. This system consists of a hybrid P300 and steady-state visual evoked potential (SSVEP) mode conveying a human being's intention, and the machine intelligence combining a fuzzy-logic-based image processing algorithm with multi-sensor fusion technology. A subject selects an object of interest via P300, and the classification algorithm transfers the corresponding parameters to an improved fuzzy color extractor for object extraction. A central vision tracking strategy automatically guides the NAO humanoid robot to the destination selected by the subject intentions represented by brainwaves. During this process, human supervises the system at high level, while machine intelligence assists the robot in accomplishing tasks by analyzing image feeding back from the camera, distance monitoring using out-of-gauge alarms from sonars, and collision detecting from bumper sensors. In this scenario, the SSVEP takes over the situations in which the machine intelligence cannot make decisions. The experimental results show that the subjects can control the robot to a destination of interest, with fewer commands than only using a brain-robot interface. Therefore, the fusion of human and machine intelligence greatly alleviates the brain load and enhances the robot executive efficiency of a brain-robot interaction system.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30716043</pmid><doi>10.1109/TNSRE.2019.2897323</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2179-2460</orcidid><orcidid>https://orcid.org/0000-0003-1418-0201</orcidid><orcidid>https://orcid.org/0000-0002-7332-0537</orcidid><orcidid>https://orcid.org/0000-0003-1778-2523</orcidid><orcidid>https://orcid.org/0000-0001-5559-7295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2019-03, Vol.27 (3), p.533-542
issn 1534-4320
1558-0210
language eng
recordid cdi_proquest_journals_2196875151
source Alma/SFX Local Collection
subjects Algorithms
Artificial Intelligence
Automation
Brain
Brain robot interaction
Brain-Computer Interfaces
Cameras
Electroencephalography
Event-related potentials
Event-Related Potentials, P300 - physiology
Evoked Potentials, Somatosensory - physiology
Fuzzy Logic
human intelligence
Humanoid
Humanoid robots
Humans
Hybrid systems
Image processing
Image Processing, Computer-Assisted
improved fuzzy color extractor (IFCE)
Intelligence
Machine intelligence
multi-sensor fusion
Multisensor fusion
Robot control
Robot sensing systems
Robotics - methods
Robots
Task analysis
Vision, Ocular - physiology
Visual evoked potentials
title A Brain-Robot Interaction System by Fusing Human and Machine Intelligence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Brain-Robot%20Interaction%20System%20by%20Fusing%20Human%20and%20Machine%20Intelligence&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Mao,%20Xiaoqian&rft.date=2019-03-01&rft.volume=27&rft.issue=3&rft.spage=533&rft.epage=542&rft.pages=533-542&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2019.2897323&rft_dat=%3Cproquest_pubme%3E2179516643%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-e3f20a0c10cd7f6698cc0fbd20572d2b374b63f7993bdfb410444a2330c04ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2196875151&rft_id=info:pmid/30716043&rft_ieee_id=8633982&rfr_iscdi=true