Loading…
The Utulity of Whole Genome Amplification for Typing Compromised Forensic Samples
Biological evidence has become invaluable in the crime laboratory; however, it may exist in limited quantity and/or quality. Given this, the ability to amplify total DNA obtained from evidence, in an unbiased manner, would be highly advantageous. Methods for whole genome amplification (WGA) have the...
Saved in:
Published in: | Journal of forensic sciences 2006-11, Vol.51 (6), p.1344 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biological evidence has become invaluable in the crime laboratory; however, it may exist in limited quantity and/or quality. Given this, the ability to amplify total DNA obtained from evidence, in an unbiased manner, would be highly advantageous. Methods for whole genome amplification (WGA) have the potential to fulfill this role, resulting in a virtually unlimited supply of DNA. In the research presented, two WGA methods, improved primer extension preamplification and multiple displacement amplification (MDA), were tested using commercial kits. Control DNA, artificially degraded DNA, and DNA from fresh blood, aged blood, hair shafts, and aged bones underwent WGA, followed by short tandem repeat and mitochondrial DNA analysis. The methods did amplify DNA, but performed poorly on forensically relevant samples; the maximum amplicon size was reduced, and MDA often resulted in extraneous bands following polymerase chain reaction. Taken together, WGA appears to be of limited forensic utility unless the samples are of a very high quality. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0022-1198 1556-4029 |