Loading…

Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions

Double merging of phase space for the stochastic evolutionary system is performed. The case is considered where system’s perturbations are determined by the impulse process at the Poisson approximation scheme. The limiting process under such conditions has two components: deterministic shift and Poi...

Full description

Saved in:
Bibliographic Details
Published in:Cybernetics and systems analysis 2019-03, Vol.55 (2), p.265-273
Main Authors: Samoilenko, I. V., Nikitin, A. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3
cites cdi_FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3
container_end_page 273
container_issue 2
container_start_page 265
container_title Cybernetics and systems analysis
container_volume 55
creator Samoilenko, I. V.
Nikitin, A. V.
description Double merging of phase space for the stochastic evolutionary system is performed. The case is considered where system’s perturbations are determined by the impulse process at the Poisson approximation scheme. The limiting process under such conditions has two components: deterministic shift and Poisson jump addition.
doi_str_mv 10.1007/s10559-019-00131-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2197050130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A597251847</galeid><sourcerecordid>A597251847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3</originalsourceid><addsrcrecordid>eNp9kV9PHCEUxSeNTeqffoE-kfSpD6MXWJbhcbNqNdFouvpMGAZmMbOwApPdvvWjFx0T44shBDj5ncvNPVX1A8MpBuBnCQNjogZcNmCK692X6hAzTuuGUn5Q7jCHGqiYf6uOUnoCAAq8Oaz-nYexHQy6NbF3vkfBorw26H6tkkGrrdIG2RDRKgddpOw0OnfWmmh8dmpAF8-jyi74hHYur9Fqo4YBLbrOTaLz6D64lIJHi-02hr3bvOJoGfwbc1J9tWpI5vvbeVw9Xl48LK_qm7vf18vFTa2pILlutRGtsLi1MxAWGk60ojNBNFYEGmoUlIdQHelwp-eMg5hjRomasY42vO3ocfVzqlvaeB5NyvIpjNGXLyXBggMrY4NCnU5UrwYjnbchR6XL6szG6eCNdUVfMMEJw82MF8OvD4bCZLPPvRpTkterPx9ZMrE6hpSisXIby0DiX4lBvsQopxhliVG-xih3xUQnUyqw70187_sT138NaqC-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197050130</pqid></control><display><type>article</type><title>Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions</title><source>Springer Link</source><creator>Samoilenko, I. V. ; Nikitin, A. V.</creator><creatorcontrib>Samoilenko, I. V. ; Nikitin, A. V.</creatorcontrib><description>Double merging of phase space for the stochastic evolutionary system is performed. The case is considered where system’s perturbations are determined by the impulse process at the Poisson approximation scheme. The limiting process under such conditions has two components: deterministic shift and Poisson jump addition.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-019-00131-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Artificial Intelligence ; Control ; Differential equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2019-03, Vol.55 (2), p.265-273</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Cybernetics and Systems Analysis is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3</citedby><cites>FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Samoilenko, I. V.</creatorcontrib><creatorcontrib>Nikitin, A. V.</creatorcontrib><title>Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Double merging of phase space for the stochastic evolutionary system is performed. The case is considered where system’s perturbations are determined by the impulse process at the Poisson approximation scheme. The limiting process under such conditions has two components: deterministic shift and Poisson jump addition.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Control</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kV9PHCEUxSeNTeqffoE-kfSpD6MXWJbhcbNqNdFouvpMGAZmMbOwApPdvvWjFx0T44shBDj5ncvNPVX1A8MpBuBnCQNjogZcNmCK692X6hAzTuuGUn5Q7jCHGqiYf6uOUnoCAAq8Oaz-nYexHQy6NbF3vkfBorw26H6tkkGrrdIG2RDRKgddpOw0OnfWmmh8dmpAF8-jyi74hHYur9Fqo4YBLbrOTaLz6D64lIJHi-02hr3bvOJoGfwbc1J9tWpI5vvbeVw9Xl48LK_qm7vf18vFTa2pILlutRGtsLi1MxAWGk60ojNBNFYEGmoUlIdQHelwp-eMg5hjRomasY42vO3ocfVzqlvaeB5NyvIpjNGXLyXBggMrY4NCnU5UrwYjnbchR6XL6szG6eCNdUVfMMEJw82MF8OvD4bCZLPPvRpTkterPx9ZMrE6hpSisXIby0DiX4lBvsQopxhliVG-xih3xUQnUyqw70187_sT138NaqC-</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Samoilenko, I. V.</creator><creator>Nikitin, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20190301</creationdate><title>Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions</title><author>Samoilenko, I. V. ; Nikitin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Control</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samoilenko, I. V.</creatorcontrib><creatorcontrib>Nikitin, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samoilenko, I. V.</au><au>Nikitin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>265</spage><epage>273</epage><pages>265-273</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Double merging of phase space for the stochastic evolutionary system is performed. The case is considered where system’s perturbations are determined by the impulse process at the Poisson approximation scheme. The limiting process under such conditions has two components: deterministic shift and Poisson jump addition.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-019-00131-w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2019-03, Vol.55 (2), p.265-273
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2197050130
source Springer Link
subjects Approximation
Artificial Intelligence
Control
Differential equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Processor Architectures
Software Engineering/Programming and Operating Systems
Systems Theory
title Double Merging of the Phase Space for Stochastic Differential Equations with Small Additions in Poisson Approximation Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Double%20Merging%20of%20the%20Phase%20Space%20for%20Stochastic%20Differential%20Equations%20with%20Small%20Additions%20in%20Poisson%20Approximation%20Conditions&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Samoilenko,%20I.%20V.&rft.date=2019-03-01&rft.volume=55&rft.issue=2&rft.spage=265&rft.epage=273&rft.pages=265-273&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-019-00131-w&rft_dat=%3Cgale_proqu%3EA597251847%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-bce9b9f1bf409f0872ca3492c1a2083ea04929ad2d1dc6570961532a45d387bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2197050130&rft_id=info:pmid/&rft_galeid=A597251847&rfr_iscdi=true