Loading…

Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon

Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2019-04, Vol.302, p.119-129
Main Authors: Kosova, Nina V., Shindrov, Alexander A., Slobodyuk, Arseny B., Kellerman, Dina G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93
cites cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93
container_end_page 129
container_issue
container_start_page 119
container_title Electrochimica acta
container_volume 302
creator Kosova, Nina V.
Shindrov, Alexander A.
Slobodyuk, Arseny B.
Kellerman, Dina G.
description Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material. [Display omitted] •NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.
doi_str_mv 10.1016/j.electacta.2019.02.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197881302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619302269</els_id><sourcerecordid>2197881302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6iha7sjyQ95GUJfEOgm3XQjxrJMFGzLleSW_H0VErotDMyDM3eYS8g9hYwCLR_3me61ChgjY0DrDFgGQC_IgoqKp1wU9SVZxAlP81KU1-TG-z0AVGUFC_K53Wk3YJ_g2CY-uFmF2cXWjD5gY3oTDontEm9bMw-pcXZMFLrGjnbaWT_tMOikwb5PBtP3uk1-TNidiVty1WHv9d05L8nH89N2_Zpu3l_e1qtNqrhgIaUoNOYNF7TQbVtonou6yCmyWAFjgA0KUKhyXvAy5raqkZesA2SIdVfzJXk46U7Ofs3aB7m3sxvjScloXQlBObBIVSdKOeu9052cnBnQHSQFeTRS7uWfkfJopAQmj7Ytyeq0qeMT30Y76ZXRo9KtcZGXrTX_avwC8UGB8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197881302</pqid></control><display><type>article</type><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><source>ScienceDirect Journals</source><creator>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</creator><creatorcontrib>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</creatorcontrib><description>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material. [Display omitted] •NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.02.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>23Na NMR ; Ball milling ; Carbon ; Composite materials ; Conductivity ; Crystal structure ; Cycles ; Decomposition ; Discharge ; Electrochemical analysis ; Electrode materials ; Fourier transforms ; Hydrothermal crystal growth ; Iron oxides ; Magnetic measurement ; Magnetic measurements ; Morphology ; Mӧssbauer spectroscopy ; Na3FePO4CO3/C ; Sodium phosphate ; Spectrum analysis ; Structural stability ; Thermal stability</subject><ispartof>Electrochimica acta, 2019-04, Vol.302, p.119-129</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</citedby><cites>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kosova, Nina V.</creatorcontrib><creatorcontrib>Shindrov, Alexander A.</creatorcontrib><creatorcontrib>Slobodyuk, Arseny B.</creatorcontrib><creatorcontrib>Kellerman, Dina G.</creatorcontrib><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><title>Electrochimica acta</title><description>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material. [Display omitted] •NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</description><subject>23Na NMR</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Crystal structure</subject><subject>Cycles</subject><subject>Decomposition</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Fourier transforms</subject><subject>Hydrothermal crystal growth</subject><subject>Iron oxides</subject><subject>Magnetic measurement</subject><subject>Magnetic measurements</subject><subject>Morphology</subject><subject>Mӧssbauer spectroscopy</subject><subject>Na3FePO4CO3/C</subject><subject>Sodium phosphate</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Thermal stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6iha7sjyQ95GUJfEOgm3XQjxrJMFGzLleSW_H0VErotDMyDM3eYS8g9hYwCLR_3me61ChgjY0DrDFgGQC_IgoqKp1wU9SVZxAlP81KU1-TG-z0AVGUFC_K53Wk3YJ_g2CY-uFmF2cXWjD5gY3oTDontEm9bMw-pcXZMFLrGjnbaWT_tMOikwb5PBtP3uk1-TNidiVty1WHv9d05L8nH89N2_Zpu3l_e1qtNqrhgIaUoNOYNF7TQbVtonou6yCmyWAFjgA0KUKhyXvAy5raqkZesA2SIdVfzJXk46U7Ofs3aB7m3sxvjScloXQlBObBIVSdKOeu9052cnBnQHSQFeTRS7uWfkfJopAQmj7Ytyeq0qeMT30Y76ZXRo9KtcZGXrTX_avwC8UGB8A</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Kosova, Nina V.</creator><creator>Shindrov, Alexander A.</creator><creator>Slobodyuk, Arseny B.</creator><creator>Kellerman, Dina G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190410</creationdate><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><author>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>23Na NMR</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Crystal structure</topic><topic>Cycles</topic><topic>Decomposition</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Fourier transforms</topic><topic>Hydrothermal crystal growth</topic><topic>Iron oxides</topic><topic>Magnetic measurement</topic><topic>Magnetic measurements</topic><topic>Morphology</topic><topic>Mӧssbauer spectroscopy</topic><topic>Na3FePO4CO3/C</topic><topic>Sodium phosphate</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosova, Nina V.</creatorcontrib><creatorcontrib>Shindrov, Alexander A.</creatorcontrib><creatorcontrib>Slobodyuk, Arseny B.</creatorcontrib><creatorcontrib>Kellerman, Dina G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosova, Nina V.</au><au>Shindrov, Alexander A.</au><au>Slobodyuk, Arseny B.</au><au>Kellerman, Dina G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>302</volume><spage>119</spage><epage>129</epage><pages>119-129</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material. [Display omitted] •NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.02.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-04, Vol.302, p.119-129
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2197881302
source ScienceDirect Journals
subjects 23Na NMR
Ball milling
Carbon
Composite materials
Conductivity
Crystal structure
Cycles
Decomposition
Discharge
Electrochemical analysis
Electrode materials
Fourier transforms
Hydrothermal crystal growth
Iron oxides
Magnetic measurement
Magnetic measurements
Morphology
Mӧssbauer spectroscopy
Na3FePO4CO3/C
Sodium phosphate
Spectrum analysis
Structural stability
Thermal stability
title Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20structural%20instability%20of%20sodium-iron%20carbonophosphate%20ball%20milled%20with%20carbon&rft.jtitle=Electrochimica%20acta&rft.au=Kosova,%20Nina%20V.&rft.date=2019-04-10&rft.volume=302&rft.spage=119&rft.epage=129&rft.pages=119-129&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.02.001&rft_dat=%3Cproquest_cross%3E2197881302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2197881302&rft_id=info:pmid/&rfr_iscdi=true