Loading…
Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon
Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity...
Saved in:
Published in: | Electrochimica acta 2019-04, Vol.302, p.119-129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93 |
container_end_page | 129 |
container_issue | |
container_start_page | 119 |
container_title | Electrochimica acta |
container_volume | 302 |
creator | Kosova, Nina V. Shindrov, Alexander A. Slobodyuk, Arseny B. Kellerman, Dina G. |
description | Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material.
[Display omitted]
•NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established. |
doi_str_mv | 10.1016/j.electacta.2019.02.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2197881302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619302269</els_id><sourcerecordid>2197881302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</originalsourceid><addsrcrecordid>eNqFkMtqwzAQRUVpoWnab6iha7sjyQ95GUJfEOgm3XQjxrJMFGzLleSW_H0VErotDMyDM3eYS8g9hYwCLR_3me61ChgjY0DrDFgGQC_IgoqKp1wU9SVZxAlP81KU1-TG-z0AVGUFC_K53Wk3YJ_g2CY-uFmF2cXWjD5gY3oTDontEm9bMw-pcXZMFLrGjnbaWT_tMOikwb5PBtP3uk1-TNidiVty1WHv9d05L8nH89N2_Zpu3l_e1qtNqrhgIaUoNOYNF7TQbVtonou6yCmyWAFjgA0KUKhyXvAy5raqkZesA2SIdVfzJXk46U7Ofs3aB7m3sxvjScloXQlBObBIVSdKOeu9052cnBnQHSQFeTRS7uWfkfJopAQmj7Ytyeq0qeMT30Y76ZXRo9KtcZGXrTX_avwC8UGB8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197881302</pqid></control><display><type>article</type><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><source>ScienceDirect Journals</source><creator>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</creator><creatorcontrib>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</creatorcontrib><description>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material.
[Display omitted]
•NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.02.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>23Na NMR ; Ball milling ; Carbon ; Composite materials ; Conductivity ; Crystal structure ; Cycles ; Decomposition ; Discharge ; Electrochemical analysis ; Electrode materials ; Fourier transforms ; Hydrothermal crystal growth ; Iron oxides ; Magnetic measurement ; Magnetic measurements ; Morphology ; Mӧssbauer spectroscopy ; Na3FePO4CO3/C ; Sodium phosphate ; Spectrum analysis ; Structural stability ; Thermal stability</subject><ispartof>Electrochimica acta, 2019-04, Vol.302, p.119-129</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</citedby><cites>FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Kosova, Nina V.</creatorcontrib><creatorcontrib>Shindrov, Alexander A.</creatorcontrib><creatorcontrib>Slobodyuk, Arseny B.</creatorcontrib><creatorcontrib>Kellerman, Dina G.</creatorcontrib><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><title>Electrochimica acta</title><description>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material.
[Display omitted]
•NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</description><subject>23Na NMR</subject><subject>Ball milling</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Crystal structure</subject><subject>Cycles</subject><subject>Decomposition</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Fourier transforms</subject><subject>Hydrothermal crystal growth</subject><subject>Iron oxides</subject><subject>Magnetic measurement</subject><subject>Magnetic measurements</subject><subject>Morphology</subject><subject>Mӧssbauer spectroscopy</subject><subject>Na3FePO4CO3/C</subject><subject>Sodium phosphate</subject><subject>Spectrum analysis</subject><subject>Structural stability</subject><subject>Thermal stability</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtqwzAQRUVpoWnab6iha7sjyQ95GUJfEOgm3XQjxrJMFGzLleSW_H0VErotDMyDM3eYS8g9hYwCLR_3me61ChgjY0DrDFgGQC_IgoqKp1wU9SVZxAlP81KU1-TG-z0AVGUFC_K53Wk3YJ_g2CY-uFmF2cXWjD5gY3oTDontEm9bMw-pcXZMFLrGjnbaWT_tMOikwb5PBtP3uk1-TNidiVty1WHv9d05L8nH89N2_Zpu3l_e1qtNqrhgIaUoNOYNF7TQbVtonou6yCmyWAFjgA0KUKhyXvAy5raqkZesA2SIdVfzJXk46U7Ofs3aB7m3sxvjScloXQlBObBIVSdKOeu9052cnBnQHSQFeTRS7uWfkfJopAQmj7Ytyeq0qeMT30Y76ZXRo9KtcZGXrTX_avwC8UGB8A</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Kosova, Nina V.</creator><creator>Shindrov, Alexander A.</creator><creator>Slobodyuk, Arseny B.</creator><creator>Kellerman, Dina G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190410</creationdate><title>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</title><author>Kosova, Nina V. ; Shindrov, Alexander A. ; Slobodyuk, Arseny B. ; Kellerman, Dina G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>23Na NMR</topic><topic>Ball milling</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Crystal structure</topic><topic>Cycles</topic><topic>Decomposition</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Fourier transforms</topic><topic>Hydrothermal crystal growth</topic><topic>Iron oxides</topic><topic>Magnetic measurement</topic><topic>Magnetic measurements</topic><topic>Morphology</topic><topic>Mӧssbauer spectroscopy</topic><topic>Na3FePO4CO3/C</topic><topic>Sodium phosphate</topic><topic>Spectrum analysis</topic><topic>Structural stability</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosova, Nina V.</creatorcontrib><creatorcontrib>Shindrov, Alexander A.</creatorcontrib><creatorcontrib>Slobodyuk, Arseny B.</creatorcontrib><creatorcontrib>Kellerman, Dina G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosova, Nina V.</au><au>Shindrov, Alexander A.</au><au>Slobodyuk, Arseny B.</au><au>Kellerman, Dina G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon</atitle><jtitle>Electrochimica acta</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>302</volume><spage>119</spage><epage>129</epage><pages>119-129</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Pristine Na3FePO4CO3 (NFPC) with the monoclinic structure and the P21/m space group was prepared by hydrothermal synthesis at 120 °C. To increase the conductivity of NFPC, it was ball milled with carbon using a SPEX 8000 mill. Crystal and local structure, morphology, thermal stability, conductivity and electrochemical properties of NFPC and NFPC/C composites were studied by XRD, DSC/TG, FTIR, Mӧssbauer spectroscopy, 23NMR spectroscopy, magnetic measurements, SEM, EIS and galvanostatic cycling. It has been shown that the as-prepared NFPC is stable below 500 °C and then decomposes to Fe3O4 and Na3PO4. Ball milling of NFPC with and without carbon leads to its partial decomposition with the formation of nanosized superparamagnetic Fe3O4 particles and a significant structural disordering, though the crystal symmetry maintains unchanged. Due to high sensitivity of NFPC to air, pristine sample contains some portion of the Fe3+ ions; it increases after ball milling. As a result, all samples are able to cycle starting both with charge and discharge. NFPC shows high stability upon cycling with the specific discharge capacity close to the theoretical one (96 mA·h·g−1 for one-electron reaction). Though the capacity of the NFPC/C composites is slightly lower at low cycling rate than that of pristine NFPC, they show better high-rate performance due to improved conductivity via the formation of the highly conductive carbon matrix. As-established low lattice volume variation upon (de)intercalation of the sodium ions along with realization of a single-phase mechanism is responsible for a long cycle life of the NFPC/C cathode material.
[Display omitted]
•NFPC/C composites were prepared by ball milling NFPC with carbon using SPEX 8000.•Structural disordering and partial decomposition of NFPC occurs upon ball milling.•NFPC/C composites show better high-rate performance due to improved conductivity.•A single-phase mechanism of sodium (de)intercalation is established.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.02.001</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2019-04, Vol.302, p.119-129 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2197881302 |
source | ScienceDirect Journals |
subjects | 23Na NMR Ball milling Carbon Composite materials Conductivity Crystal structure Cycles Decomposition Discharge Electrochemical analysis Electrode materials Fourier transforms Hydrothermal crystal growth Iron oxides Magnetic measurement Magnetic measurements Morphology Mӧssbauer spectroscopy Na3FePO4CO3/C Sodium phosphate Spectrum analysis Structural stability Thermal stability |
title | Thermal and structural instability of sodium-iron carbonophosphate ball milled with carbon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20structural%20instability%20of%20sodium-iron%20carbonophosphate%20ball%20milled%20with%20carbon&rft.jtitle=Electrochimica%20acta&rft.au=Kosova,%20Nina%20V.&rft.date=2019-04-10&rft.volume=302&rft.spage=119&rft.epage=129&rft.pages=119-129&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.02.001&rft_dat=%3Cproquest_cross%3E2197881302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-1a8ea4b3815edd5e3489541a2e340220aba80cac43536cacd79a362f0a2aa9f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2197881302&rft_id=info:pmid/&rfr_iscdi=true |