Loading…

Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis

Generally, fungi have the ability to secrete large amounts of secondary metabolites which have the ability to reduce metal ions to metallic nanoparticles. In this report, silver nanoparticles (AgNPs) were synthesized by using an endophytic fungus isolated from the medicinal plant, Catharanthus roseu...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2019-05, Vol.26 (13), p.13649-13657
Main Authors: Akther, Tahira, Vabeiryureilai Mathipi, Nachimuthu Senthil Kumar, Davoodbasha, MubarakAli, Srinivasan, Hemalatha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Generally, fungi have the ability to secrete large amounts of secondary metabolites which have the ability to reduce metal ions to metallic nanoparticles. In this report, silver nanoparticles (AgNPs) were synthesized by using an endophytic fungus isolated from the medicinal plant, Catharanthus roseus (Linn.). The endophytic fungus was identified as Botryosphaeria rhodina based on the ITS sequencing. The synthesized AgNPs were characterized by adopting various high-throughput techniques, scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDAX), high-resolution transmission electron microscopy (HR-TEM) and UV–Visible spectrophotometer. In vitro anticancer efficacy of AgNPs was tested on A-549 cells. The synthesized AgNPs were effective in scavenging free radicals and induced hallmarks of apoptosis including nuclear and DNA fragmentation in lung (A549) cancer cell lines under in vitro conditions. The results suggested that the natural biomolecules in the endophytic fungi incorporated into the nanoparticles could be responsible for the synergetic cytotoxic activity against cancer cells. The AgNPs were found to have cytotoxicity IC 50 of 40 μg/mL against A549 cells. To the best our knowledge, this is the first report demonstrating that AgNPs from Botryosphaeria rhodina could be able to induce apoptosis in various types of cancer cells as a novel strategy for cancer treatment.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-019-04718-w