Loading…

Fibonacci sequence and its generalizations in doped quantum spin ladders

•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2019-05, Vol.478, p.100-108
Main Authors: Singha Roy, Sudipto, Dhar, Himadri Shekhar, Sen(De), Aditi, Sen, Ujjwal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733
container_end_page 108
container_issue
container_start_page 100
container_title Journal of magnetism and magnetic materials
container_volume 478
creator Singha Roy, Sudipto
Dhar, Himadri Shekhar
Sen(De), Aditi
Sen, Ujjwal
description •Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities. An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.
doi_str_mv 10.1016/j.jmmm.2019.01.064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198564269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885318329779</els_id><sourcerecordid>2198564269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz62ZJJum4EUWdYUFL3sPaZJKyjbtJq2gv96U9expeMN7M48PoXsgJRAQj13Z9X1fUgJ1SaAkgl-gFciKFbwS4hKtCCO8kHLDrtFNSh0hBLgUK7R79c0QtDEeJ3eaXTAO62CxnxL-dMFFffQ_evJDSNgHbIfRWXyadZjmHqcxr47aWhfTLbpq9TG5u7-5RofXl8N2V-w_3t63z_vCMMqmwphamkbUxokNNFxrSwmtgNvGCit02zbCWg2QdQ2yBerAcSmlqVoCFWNr9HA-O8Yh102T6oY5hvxRUajlRnAq6uyiZ5eJQ0rRtWqMvtfxWwFRCzDVqQWYWoApAioDy6Gnc8jl-l_eRZWMX4BYH52ZlB38f_FfRip1UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198564269</pqid></control><display><type>article</type><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><source>ScienceDirect Journals</source><creator>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</creator><creatorcontrib>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</creatorcontrib><description>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities. An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.01.064</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Coverings ; Dimers ; Entanglement ; Entropy ; Fibonacci numbers ; Figure of merit ; Ladders ; Lattices (mathematics) ; Numerical methods ; Sequences</subject><ispartof>Journal of magnetism and magnetic materials, 2019-05, Vol.478, p.100-108</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</cites><orcidid>0000-0002-0091-5847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singha Roy, Sudipto</creatorcontrib><creatorcontrib>Dhar, Himadri Shekhar</creatorcontrib><creatorcontrib>Sen(De), Aditi</creatorcontrib><creatorcontrib>Sen, Ujjwal</creatorcontrib><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><title>Journal of magnetism and magnetic materials</title><description>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities. An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</description><subject>Antiferromagnetism</subject><subject>Coverings</subject><subject>Dimers</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Fibonacci numbers</subject><subject>Figure of merit</subject><subject>Ladders</subject><subject>Lattices (mathematics)</subject><subject>Numerical methods</subject><subject>Sequences</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz62ZJJum4EUWdYUFL3sPaZJKyjbtJq2gv96U9expeMN7M48PoXsgJRAQj13Z9X1fUgJ1SaAkgl-gFciKFbwS4hKtCCO8kHLDrtFNSh0hBLgUK7R79c0QtDEeJ3eaXTAO62CxnxL-dMFFffQ_evJDSNgHbIfRWXyadZjmHqcxr47aWhfTLbpq9TG5u7-5RofXl8N2V-w_3t63z_vCMMqmwphamkbUxokNNFxrSwmtgNvGCit02zbCWg2QdQ2yBerAcSmlqVoCFWNr9HA-O8Yh102T6oY5hvxRUajlRnAq6uyiZ5eJQ0rRtWqMvtfxWwFRCzDVqQWYWoApAioDy6Gnc8jl-l_eRZWMX4BYH52ZlB38f_FfRip1UQ</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Singha Roy, Sudipto</creator><creator>Dhar, Himadri Shekhar</creator><creator>Sen(De), Aditi</creator><creator>Sen, Ujjwal</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0091-5847</orcidid></search><sort><creationdate>20190515</creationdate><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><author>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Coverings</topic><topic>Dimers</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Fibonacci numbers</topic><topic>Figure of merit</topic><topic>Ladders</topic><topic>Lattices (mathematics)</topic><topic>Numerical methods</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singha Roy, Sudipto</creatorcontrib><creatorcontrib>Dhar, Himadri Shekhar</creatorcontrib><creatorcontrib>Sen(De), Aditi</creatorcontrib><creatorcontrib>Sen, Ujjwal</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singha Roy, Sudipto</au><au>Dhar, Himadri Shekhar</au><au>Sen(De), Aditi</au><au>Sen, Ujjwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci sequence and its generalizations in doped quantum spin ladders</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>478</volume><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities. An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.01.064</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0091-5847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-8853
ispartof Journal of magnetism and magnetic materials, 2019-05, Vol.478, p.100-108
issn 0304-8853
1873-4766
language eng
recordid cdi_proquest_journals_2198564269
source ScienceDirect Journals
subjects Antiferromagnetism
Coverings
Dimers
Entanglement
Entropy
Fibonacci numbers
Figure of merit
Ladders
Lattices (mathematics)
Numerical methods
Sequences
title Fibonacci sequence and its generalizations in doped quantum spin ladders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20sequence%20and%20its%20generalizations%20in%20doped%20quantum%20spin%20ladders&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Singha%20Roy,%20Sudipto&rft.date=2019-05-15&rft.volume=478&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.01.064&rft_dat=%3Cproquest_cross%3E2198564269%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2198564269&rft_id=info:pmid/&rfr_iscdi=true