Loading…
Fibonacci sequence and its generalizations in doped quantum spin ladders
•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2019-05, Vol.478, p.100-108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733 |
container_end_page | 108 |
container_issue | |
container_start_page | 100 |
container_title | Journal of magnetism and magnetic materials |
container_volume | 478 |
creator | Singha Roy, Sudipto Dhar, Himadri Shekhar Sen(De), Aditi Sen, Ujjwal |
description | •Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities.
An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders. |
doi_str_mv | 10.1016/j.jmmm.2019.01.064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2198564269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304885318329779</els_id><sourcerecordid>2198564269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz62ZJJum4EUWdYUFL3sPaZJKyjbtJq2gv96U9expeMN7M48PoXsgJRAQj13Z9X1fUgJ1SaAkgl-gFciKFbwS4hKtCCO8kHLDrtFNSh0hBLgUK7R79c0QtDEeJ3eaXTAO62CxnxL-dMFFffQ_evJDSNgHbIfRWXyadZjmHqcxr47aWhfTLbpq9TG5u7-5RofXl8N2V-w_3t63z_vCMMqmwphamkbUxokNNFxrSwmtgNvGCit02zbCWg2QdQ2yBerAcSmlqVoCFWNr9HA-O8Yh102T6oY5hvxRUajlRnAq6uyiZ5eJQ0rRtWqMvtfxWwFRCzDVqQWYWoApAioDy6Gnc8jl-l_eRZWMX4BYH52ZlB38f_FfRip1UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198564269</pqid></control><display><type>article</type><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><source>ScienceDirect Journals</source><creator>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</creator><creatorcontrib>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</creatorcontrib><description>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities.
An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</description><identifier>ISSN: 0304-8853</identifier><identifier>EISSN: 1873-4766</identifier><identifier>DOI: 10.1016/j.jmmm.2019.01.064</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Antiferromagnetism ; Coverings ; Dimers ; Entanglement ; Entropy ; Fibonacci numbers ; Figure of merit ; Ladders ; Lattices (mathematics) ; Numerical methods ; Sequences</subject><ispartof>Journal of magnetism and magnetic materials, 2019-05, Vol.478, p.100-108</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</cites><orcidid>0000-0002-0091-5847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Singha Roy, Sudipto</creatorcontrib><creatorcontrib>Dhar, Himadri Shekhar</creatorcontrib><creatorcontrib>Sen(De), Aditi</creatorcontrib><creatorcontrib>Sen, Ujjwal</creatorcontrib><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><title>Journal of magnetism and magnetic materials</title><description>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities.
An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</description><subject>Antiferromagnetism</subject><subject>Coverings</subject><subject>Dimers</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Fibonacci numbers</subject><subject>Figure of merit</subject><subject>Ladders</subject><subject>Lattices (mathematics)</subject><subject>Numerical methods</subject><subject>Sequences</subject><issn>0304-8853</issn><issn>1873-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz62ZJJum4EUWdYUFL3sPaZJKyjbtJq2gv96U9expeMN7M48PoXsgJRAQj13Z9X1fUgJ1SaAkgl-gFciKFbwS4hKtCCO8kHLDrtFNSh0hBLgUK7R79c0QtDEeJ3eaXTAO62CxnxL-dMFFffQ_evJDSNgHbIfRWXyadZjmHqcxr47aWhfTLbpq9TG5u7-5RofXl8N2V-w_3t63z_vCMMqmwphamkbUxokNNFxrSwmtgNvGCit02zbCWg2QdQ2yBerAcSmlqVoCFWNr9HA-O8Yh102T6oY5hvxRUajlRnAq6uyiZ5eJQ0rRtWqMvtfxWwFRCzDVqQWYWoApAioDy6Gnc8jl-l_eRZWMX4BYH52ZlB38f_FfRip1UQ</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Singha Roy, Sudipto</creator><creator>Dhar, Himadri Shekhar</creator><creator>Sen(De), Aditi</creator><creator>Sen, Ujjwal</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0091-5847</orcidid></search><sort><creationdate>20190515</creationdate><title>Fibonacci sequence and its generalizations in doped quantum spin ladders</title><author>Singha Roy, Sudipto ; Dhar, Himadri Shekhar ; Sen(De), Aditi ; Sen, Ujjwal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Coverings</topic><topic>Dimers</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Fibonacci numbers</topic><topic>Figure of merit</topic><topic>Ladders</topic><topic>Lattices (mathematics)</topic><topic>Numerical methods</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singha Roy, Sudipto</creatorcontrib><creatorcontrib>Dhar, Himadri Shekhar</creatorcontrib><creatorcontrib>Sen(De), Aditi</creatorcontrib><creatorcontrib>Sen, Ujjwal</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetism and magnetic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singha Roy, Sudipto</au><au>Dhar, Himadri Shekhar</au><au>Sen(De), Aditi</au><au>Sen, Ujjwal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibonacci sequence and its generalizations in doped quantum spin ladders</atitle><jtitle>Journal of magnetism and magnetic materials</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>478</volume><spage>100</spage><epage>108</epage><pages>100-108</pages><issn>0304-8853</issn><eissn>1873-4766</eissn><abstract>•Short-range RVB states can be recursively generated from smaller configurations.•For undoped two-legs ladders such recursion follows the fabled Fibonacci sequence.•Generalized sequences for multi-legged doped and undoped spin-ladders can be obtained.•The sequences allow estimation of many relevant physical quantities.
An interesting aspect of antiferromagnetic quantum spin ladders, with complete dimer coverings, is that the wave function can be recursively generated by estimating the number of coverings in the valence bond basis, which follow the fabled Fibonacci sequence. In this work, we derive generalized forms of this sequence for multi-legged and doped quantum spin ladders, which allow the corresponding dimer-covered state to be recursively generated. We show that these sequences allow for estimation of physically and information-theoretically relevant quantities in large spin lattices without resorting to complex numerical methods. We apply the formalism to calculate the valence bond entanglement entropy, which is an important figure of merit for studying cooperative phenomena in quantum spin systems with SU(2) symmetry. We show that introduction of doping may mitigate, within the quarters of entanglement entropy, the dichotomy between odd- and even- legged quantum spin ladders.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmmm.2019.01.064</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0091-5847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-8853 |
ispartof | Journal of magnetism and magnetic materials, 2019-05, Vol.478, p.100-108 |
issn | 0304-8853 1873-4766 |
language | eng |
recordid | cdi_proquest_journals_2198564269 |
source | ScienceDirect Journals |
subjects | Antiferromagnetism Coverings Dimers Entanglement Entropy Fibonacci numbers Figure of merit Ladders Lattices (mathematics) Numerical methods Sequences |
title | Fibonacci sequence and its generalizations in doped quantum spin ladders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibonacci%20sequence%20and%20its%20generalizations%20in%20doped%20quantum%20spin%20ladders&rft.jtitle=Journal%20of%20magnetism%20and%20magnetic%20materials&rft.au=Singha%20Roy,%20Sudipto&rft.date=2019-05-15&rft.volume=478&rft.spage=100&rft.epage=108&rft.pages=100-108&rft.issn=0304-8853&rft.eissn=1873-4766&rft_id=info:doi/10.1016/j.jmmm.2019.01.064&rft_dat=%3Cproquest_cross%3E2198564269%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-cc98cb69ce651b4aad202714dbd6d6affb6dda11dbd918f12e1e4888c7f01733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2198564269&rft_id=info:pmid/&rfr_iscdi=true |