Loading…

Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir

Xenoliths of subducted crustal origin hosted by Miocene ultrapotassic igneous rocks in the southern Pamir provide important new information regarding the geological processes accompanying tectonism during the Indo-Eurasian collision. Four types have been studied: sanidine eclogites (omphacite, garne...

Full description

Saved in:
Bibliographic Details
Published in:Journal of petrology 2005-08, Vol.46 (8), p.1661-1687
Main Authors: HACKER, BRADLEY, LUFFI, PETER, LUTKOV, VALERY, MINAEV, VLADISLAV, RATSCHBACHER, LOTHAR, PLANK, TERRY, DUCEA, MIHAI, PATIÑO-DOUCE, ALBERTO, McWILLIAMS, MICHAEL, METCALF, JIM
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Xenoliths of subducted crustal origin hosted by Miocene ultrapotassic igneous rocks in the southern Pamir provide important new information regarding the geological processes accompanying tectonism during the Indo-Eurasian collision. Four types have been studied: sanidine eclogites (omphacite, garnet, sanidine, quartz, biotite, kyanite), felsic granulites (garnet, quartz, sanidine and kyanite), basaltic eclogites (omphacite and garnet), and a glimmerite (biotite, clinopyroxene and sanidine). Apatite, rutile and carbonate are the most abundant minor phases. Hydrous phases (biotite and phengite in felsic granulites and basaltic eclogites, amphiboles in mafic and sanidine eclogites) and plagioclase form minor inclusions in garnet or kyanite. Solid-phase thermobarometry reveals recrystallization at mainly ultrahigh temperatures of 1000–1100°C and near-ultrahigh pressures of 2·5–2·8 GPa. Textures, parageneses and mineral compositions suggest derivation of the xenoliths from subducted basaltic, tonalitic and pelitic crust that experienced high-pressure dehydration melting, K-rich metasomatism, and solid-state re-equilibration. The timing of these processes is constrained by zircon ages from the xenoliths and 40Ar/39Ar ages of the host volcanic rocks to 57–11 Ma. These xenoliths reveal that deeply subducted crust may undergo extensive dehydration-driven partial melting, density-driven differentiation and disaggregation, and sequestration within the mantle. These processes may also contribute to the alkaline volcanism observed in continent-collision zones.
ISSN:0022-3530
1460-2415
DOI:10.1093/petrology/egi030