Loading…
Exponential stability and numerical treatment for piezoelectric beams with magnetic effect
In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential...
Saved in:
Published in: | ESAIM. Mathematical modelling and numerical analysis 2018-01, Vol.52 (1), p.255-274 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3 |
container_end_page | 274 |
container_issue | 1 |
container_start_page | 255 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 52 |
creator | Ramos, Anderson J.A. Gonçalves, Cledson S.L. Corrêa Neto, Silvério S. |
description | In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential stability of the total energy of the continuous problem and reproduce a numerical counterpart in a totally discrete domain, which preserves the important decay property of the numerical energy. |
doi_str_mv | 10.1051/m2an/2018004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199212399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199212399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs3f8CCV9dOvnY3R6lWxaIHFcVLyGYT3bpfJim2_npTWpzLwPs-zMCD0CmGCwwcT1qiugkBXACwPTTCREBKC4b30QjyjKW8oG-H6Mj7BQBgYHyE3q9XQ9-ZLtSqSXxQZd3UYZ2orkq6ZWtcrWMenFGhjVBie5cMtfntTWN0iG1SGtX65KcOn0mrPjoTYmasje0xOrCq8eZkt8foZXb9PL1N5483d9PLeaopFSFVhghWZXG4tiAso5xZYyuwecUpxRmpFNcaMkK1UDRnuCAWVxUFVYqclnSMzrZ3B9d_L40PctEvXRdfSoKFIJhQISJ1vqW06713xsrB1a1ya4lBbuzJjT25sxfxdIvXPpjVP6vcl8xymnNZwKuc4YerJzqfynv6BxQkcqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199212399</pqid></control><display><type>article</type><title>Exponential stability and numerical treatment for piezoelectric beams with magnetic effect</title><source>Freely Accessible Journals</source><creator>Ramos, Anderson J.A. ; Gonçalves, Cledson S.L. ; Corrêa Neto, Silvério S.</creator><creatorcontrib>Ramos, Anderson J.A. ; Gonçalves, Cledson S.L. ; Corrêa Neto, Silvério S.</creatorcontrib><description>In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential stability of the total energy of the continuous problem and reproduce a numerical counterpart in a totally discrete domain, which preserves the important decay property of the numerical energy.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2018004</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35L53 ; 65M06 ; Decision analysis ; exponential decay ; finite-difference discretization ; magnetic effect ; Magnetic effects ; Mathematical models ; Piezoelectric beams ; Piezoelectricity ; Stability analysis</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2018-01, Vol.52 (1), p.255-274</ispartof><rights>2018. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2018/01/m2an160176/m2an160176.html .</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3</citedby><cites>FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramos, Anderson J.A.</creatorcontrib><creatorcontrib>Gonçalves, Cledson S.L.</creatorcontrib><creatorcontrib>Corrêa Neto, Silvério S.</creatorcontrib><title>Exponential stability and numerical treatment for piezoelectric beams with magnetic effect</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential stability of the total energy of the continuous problem and reproduce a numerical counterpart in a totally discrete domain, which preserves the important decay property of the numerical energy.</description><subject>35L53</subject><subject>65M06</subject><subject>Decision analysis</subject><subject>exponential decay</subject><subject>finite-difference discretization</subject><subject>magnetic effect</subject><subject>Magnetic effects</subject><subject>Mathematical models</subject><subject>Piezoelectric beams</subject><subject>Piezoelectricity</subject><subject>Stability analysis</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs3f8CCV9dOvnY3R6lWxaIHFcVLyGYT3bpfJim2_npTWpzLwPs-zMCD0CmGCwwcT1qiugkBXACwPTTCREBKC4b30QjyjKW8oG-H6Mj7BQBgYHyE3q9XQ9-ZLtSqSXxQZd3UYZ2orkq6ZWtcrWMenFGhjVBie5cMtfntTWN0iG1SGtX65KcOn0mrPjoTYmasje0xOrCq8eZkt8foZXb9PL1N5483d9PLeaopFSFVhghWZXG4tiAso5xZYyuwecUpxRmpFNcaMkK1UDRnuCAWVxUFVYqclnSMzrZ3B9d_L40PctEvXRdfSoKFIJhQISJ1vqW06713xsrB1a1ya4lBbuzJjT25sxfxdIvXPpjVP6vcl8xymnNZwKuc4YerJzqfynv6BxQkcqM</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ramos, Anderson J.A.</creator><creator>Gonçalves, Cledson S.L.</creator><creator>Corrêa Neto, Silvério S.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180101</creationdate><title>Exponential stability and numerical treatment for piezoelectric beams with magnetic effect</title><author>Ramos, Anderson J.A. ; Gonçalves, Cledson S.L. ; Corrêa Neto, Silvério S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35L53</topic><topic>65M06</topic><topic>Decision analysis</topic><topic>exponential decay</topic><topic>finite-difference discretization</topic><topic>magnetic effect</topic><topic>Magnetic effects</topic><topic>Mathematical models</topic><topic>Piezoelectric beams</topic><topic>Piezoelectricity</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ramos, Anderson J.A.</creatorcontrib><creatorcontrib>Gonçalves, Cledson S.L.</creatorcontrib><creatorcontrib>Corrêa Neto, Silvério S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos, Anderson J.A.</au><au>Gonçalves, Cledson S.L.</au><au>Corrêa Neto, Silvério S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stability and numerical treatment for piezoelectric beams with magnetic effect</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>52</volume><issue>1</issue><spage>255</spage><epage>274</epage><pages>255-274</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by Morris and Özer (Proc. of 52nd IEEE Conference on Decision & Control (2013) 3014–3019). Our main interest is to analyze the issues relating to exponential stability of the total energy of the continuous problem and reproduce a numerical counterpart in a totally discrete domain, which preserves the important decay property of the numerical energy.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2018004</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2018-01, Vol.52 (1), p.255-274 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2199212399 |
source | Freely Accessible Journals |
subjects | 35L53 65M06 Decision analysis exponential decay finite-difference discretization magnetic effect Magnetic effects Mathematical models Piezoelectric beams Piezoelectricity Stability analysis |
title | Exponential stability and numerical treatment for piezoelectric beams with magnetic effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stability%20and%20numerical%20treatment%20for%20piezoelectric%20beams%20with%20magnetic%20effect&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Ramos,%20Anderson%20J.A.&rft.date=2018-01-01&rft.volume=52&rft.issue=1&rft.spage=255&rft.epage=274&rft.pages=255-274&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2018004&rft_dat=%3Cproquest_cross%3E2199212399%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-ae294d66665cf09f4354fefd0f7d533162da5cc0623c9a374182f1dd30ab973b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199212399&rft_id=info:pmid/&rfr_iscdi=true |