Loading…

A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest

We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Ly\(\alpha\) forest. The distribution of Doppler parameter and column density (\(b\)-\(N_{\text{HI}}\) distribution) is sensitive to the temperature density relation \(T=...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-03
Main Authors: Hiss, Hector, Walther, Michael, Oñorbe, José, Hennawi, Joseph F
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hiss, Hector
Walther, Michael
Oñorbe, José
Hennawi, Joseph F
description We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Ly\(\alpha\) forest. The distribution of Doppler parameter and column density (\(b\)-\(N_{\text{HI}}\) distribution) is sensitive to the temperature density relation \(T=T_0 (\rho/\rho_0)^{\gamma-1}\), and previous work has inferred \(T_0\) and \(\gamma\) by fitting its low-\(b\) cutoff. This approach discards the majority of available data, and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the \(b\)-\(N_{\text{HI}}\) distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, then use principal component decomposition to create an emulator which can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D \((T_0, \gamma)\) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at \(z=2\). Using 200 absorbers, equivalent in pathlength to a single Ly\(\alpha\) forest spectrum, we measure \(\log T_0 =4.092^{+0.050}_{-0.055}\) and \(\gamma=1.49^{+0.073}_{-0.074}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of \(\log T_0\) and \(\gamma\) with precision on \(\log T_0\) (\(\gamma\)) nearly two (three) times higher for current dataset sizes.
doi_str_mv 10.48550/arxiv.1903.11940
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2199584842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199584842</sourcerecordid><originalsourceid>FETCH-proquest_journals_21995848423</originalsourceid><addsrcrecordid>eNqNj8FKw0AQhhdBsGgfwNuAl_SQuLtJNDkWa23B9qD1thA2OjFbYjbubkpL6RP5ki7F3j3NwHzf_zOEXDMaJVma0ltptmoTsZzGEWN5Qs_IgMcxC7OE8wsytHZNKeV39zxN4wH5GcNSb7CBVyedsk69ywYW6Gr9AZU2fpW2N6r9BFcjrPCrQyNdbzCcYGuV28ELNt7ULaj2yMyfFvBmT4YISjEKRbAs9sLh1u1n88NBjGDiu4wq-6OpKxiXVpsSjT3FPO9EIGTT1dLTU23QuityXsnG4vBvXpKb6ePqYRZ2Rn_3HijWujetPxWc5XmaJf7n-H_UL2paZP0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199584842</pqid></control><display><type>article</type><title>A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest</title><source>Publicly Available Content Database</source><creator>Hiss, Hector ; Walther, Michael ; Oñorbe, José ; Hennawi, Joseph F</creator><creatorcontrib>Hiss, Hector ; Walther, Michael ; Oñorbe, José ; Hennawi, Joseph F</creatorcontrib><description>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Ly\(\alpha\) forest. The distribution of Doppler parameter and column density (\(b\)-\(N_{\text{HI}}\) distribution) is sensitive to the temperature density relation \(T=T_0 (\rho/\rho_0)^{\gamma-1}\), and previous work has inferred \(T_0\) and \(\gamma\) by fitting its low-\(b\) cutoff. This approach discards the majority of available data, and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the \(b\)-\(N_{\text{HI}}\) distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, then use principal component decomposition to create an emulator which can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D \((T_0, \gamma)\) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at \(z=2\). Using 200 absorbers, equivalent in pathlength to a single Ly\(\alpha\) forest spectrum, we measure \(\log T_0 =4.092^{+0.050}_{-0.055}\) and \(\gamma=1.49^{+0.073}_{-0.074}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of \(\log T_0\) and \(\gamma\) with precision on \(\log T_0\) (\(\gamma\)) nearly two (three) times higher for current dataset sizes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.11940</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorbers ; Bayesian analysis ; Coding ; Computer simulation ; Decomposition ; Emulators ; Forests ; Intergalactic media ; Markov chains ; Parameter sensitivity ; Probability density functions ; Statistical analysis ; Thermal simulation ; Thermodynamic properties</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2199584842?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, José</creatorcontrib><creatorcontrib>Hennawi, Joseph F</creatorcontrib><title>A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest</title><title>arXiv.org</title><description>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Ly\(\alpha\) forest. The distribution of Doppler parameter and column density (\(b\)-\(N_{\text{HI}}\) distribution) is sensitive to the temperature density relation \(T=T_0 (\rho/\rho_0)^{\gamma-1}\), and previous work has inferred \(T_0\) and \(\gamma\) by fitting its low-\(b\) cutoff. This approach discards the majority of available data, and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the \(b\)-\(N_{\text{HI}}\) distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, then use principal component decomposition to create an emulator which can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D \((T_0, \gamma)\) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at \(z=2\). Using 200 absorbers, equivalent in pathlength to a single Ly\(\alpha\) forest spectrum, we measure \(\log T_0 =4.092^{+0.050}_{-0.055}\) and \(\gamma=1.49^{+0.073}_{-0.074}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of \(\log T_0\) and \(\gamma\) with precision on \(\log T_0\) (\(\gamma\)) nearly two (three) times higher for current dataset sizes.</description><subject>Absorbers</subject><subject>Bayesian analysis</subject><subject>Coding</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Emulators</subject><subject>Forests</subject><subject>Intergalactic media</subject><subject>Markov chains</subject><subject>Parameter sensitivity</subject><subject>Probability density functions</subject><subject>Statistical analysis</subject><subject>Thermal simulation</subject><subject>Thermodynamic properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNj8FKw0AQhhdBsGgfwNuAl_SQuLtJNDkWa23B9qD1thA2OjFbYjbubkpL6RP5ki7F3j3NwHzf_zOEXDMaJVma0ltptmoTsZzGEWN5Qs_IgMcxC7OE8wsytHZNKeV39zxN4wH5GcNSb7CBVyedsk69ywYW6Gr9AZU2fpW2N6r9BFcjrPCrQyNdbzCcYGuV28ELNt7ULaj2yMyfFvBmT4YISjEKRbAs9sLh1u1n88NBjGDiu4wq-6OpKxiXVpsSjT3FPO9EIGTT1dLTU23QuityXsnG4vBvXpKb6ePqYRZ2Rn_3HijWujetPxWc5XmaJf7n-H_UL2paZP0</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Hiss, Hector</creator><creator>Walther, Michael</creator><creator>Oñorbe, José</creator><creator>Hennawi, Joseph F</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190328</creationdate><title>A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest</title><author>Hiss, Hector ; Walther, Michael ; Oñorbe, José ; Hennawi, Joseph F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21995848423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbers</topic><topic>Bayesian analysis</topic><topic>Coding</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Emulators</topic><topic>Forests</topic><topic>Intergalactic media</topic><topic>Markov chains</topic><topic>Parameter sensitivity</topic><topic>Probability density functions</topic><topic>Statistical analysis</topic><topic>Thermal simulation</topic><topic>Thermodynamic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, José</creatorcontrib><creatorcontrib>Hennawi, Joseph F</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiss, Hector</au><au>Walther, Michael</au><au>Oñorbe, José</au><au>Hennawi, Joseph F</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest</atitle><jtitle>arXiv.org</jtitle><date>2019-03-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Ly\(\alpha\) forest. The distribution of Doppler parameter and column density (\(b\)-\(N_{\text{HI}}\) distribution) is sensitive to the temperature density relation \(T=T_0 (\rho/\rho_0)^{\gamma-1}\), and previous work has inferred \(T_0\) and \(\gamma\) by fitting its low-\(b\) cutoff. This approach discards the majority of available data, and is susceptible to systematics related to cutoff determination. We present a method that exploits all information encoded in the \(b\)-\(N_{\text{HI}}\) distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, then use principal component decomposition to create an emulator which can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D \((T_0, \gamma)\) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at \(z=2\). Using 200 absorbers, equivalent in pathlength to a single Ly\(\alpha\) forest spectrum, we measure \(\log T_0 =4.092^{+0.050}_{-0.055}\) and \(\gamma=1.49^{+0.073}_{-0.074}\) in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of \(\log T_0\) and \(\gamma\) with precision on \(\log T_0\) (\(\gamma\)) nearly two (three) times higher for current dataset sizes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.11940</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2199584842
source Publicly Available Content Database
subjects Absorbers
Bayesian analysis
Coding
Computer simulation
Decomposition
Emulators
Forests
Intergalactic media
Markov chains
Parameter sensitivity
Probability density functions
Statistical analysis
Thermal simulation
Thermodynamic properties
title A Novel Statistical Method for Measuring the Temperature-Density Relation in the IGM Using the \(b\)-\(N_{\text{HI}}\) Distribution of Absorbers in the Ly\(\alpha\) Forest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A23%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Novel%20Statistical%20Method%20for%20Measuring%20the%20Temperature-Density%20Relation%20in%20the%20IGM%20Using%20the%20%5C(b%5C)-%5C(N_%7B%5Ctext%7BHI%7D%7D%5C)%20Distribution%20of%20Absorbers%20in%20the%20Ly%5C(%5Calpha%5C)%20Forest&rft.jtitle=arXiv.org&rft.au=Hiss,%20Hector&rft.date=2019-03-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.11940&rft_dat=%3Cproquest%3E2199584842%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21995848423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199584842&rft_id=info:pmid/&rfr_iscdi=true