Loading…
Sharp embeddings of Bessel potential spaces with logarithmic smoothness
We derive simple conditions, which are both necessary and sufficient, for the validity of sharp local embeddings $H^{\sigma,\alpha} X({\bf R}^{n}) \hookrightarrow Y({\bf {\Omega})$ and sharp global embeddings $H^{\sigma,\alpha}, X({\bf R}^{n}) \hookrightarrow Z({\bf R}^{n})$. Here $H^{\sigma,\alpha}...
Saved in:
Published in: | Mathematical proceedings of the Cambridge Philosophical Society 2003-03, Vol.134 (2), p.347-384 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We derive simple conditions, which are both necessary and sufficient, for the validity of sharp local embeddings $H^{\sigma,\alpha} X({\bf R}^{n}) \hookrightarrow Y({\bf {\Omega})$ and sharp global embeddings $H^{\sigma,\alpha}, X({\bf R}^{n}) \hookrightarrow Z({\bf R}^{n})$. Here $H^{\sigma,\alpha}$, stands for a Bessel potential operator involving the classical smoothness $\alpha$ and logarithmic smoothness $\alpha$, X, Y and Z are (generalized) Lorentz–Zygmund spaces, and $\Omega\subset {\bf R^{n}}$ is an open subset whose n-dimensional Lebesgue measure is finite. Our results extend those of [18] and improve them especially in the extreme cases when X is close to L1, or Y and Z are close to $L^{\infty}$, or when $\sigma=0$ and $\alpha > 0$. |
---|---|
ISSN: | 0305-0041 1469-8064 |
DOI: | 10.1017/S0305004102006321 |