Loading…
Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells
•We developed a self-designed cooling rate controllable device.•An experimental-modeling approach was established to demonstrate the temperature distributions during cryopreservation.•We used the natural killer T cells for cryopreservation to verify our approach. Cryopreservation is the technique to...
Saved in:
Published in: | Applied thermal engineering 2019-02, Vol.148, p.768-776 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483 |
container_end_page | 776 |
container_issue | |
container_start_page | 768 |
container_title | Applied thermal engineering |
container_volume | 148 |
creator | Huang, Yu Memon, Kashan Chapal Hossain, S.M. Peng, Ji Wang, Jianye Shu, Zhiquan Ma, Kui Shen, Lingxiao Liu Gao, Frank Cao, Yunxia Hu, Peng Zhao, Gang |
description | •We developed a self-designed cooling rate controllable device.•An experimental-modeling approach was established to demonstrate the temperature distributions during cryopreservation.•We used the natural killer T cells for cryopreservation to verify our approach.
Cryopreservation is the technique to preserve the biosamples at extremely low temperature. The optimal cooling rate is an important factor influencing the survival of biological samples during cryopreservation. In this study, we established a combined experimental-modeling approach for high precision prediction of the temperature distribution during cryopreservation of biosamples by simple passive cooling rate control device (PCD) instead of conventional liquid nitrogen (LNF) method that leads to uncontrolled rewarming and cell destruction. Moreover, the PCD method does not require any consumption of liquid nitrogen with minimum invigilation of the labor whereas the LNF approach needs this support. In our experiment, we have used PCD to cryopreserve the natural killer T (NKT) cells and also simulated the model with actual device dimensions and its properties. We systematically evaluate our results of the PCD method with the conventional LNF method by acquiring the viability and functions of the NKT cells after the cryopreservation. The PCD method proposes a high-efficiency, cost-effective, robust, and minimal labor approach for cryopreservation of the biosamples for preservation and transportation. |
doi_str_mv | 10.1016/j.applthermaleng.2018.10.128 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199899535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118335075</els_id><sourcerecordid>2199899535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483</originalsourceid><addsrcrecordid>eNqNUMtKBDEQHETB5z8E9DprMtnMJOBFxBcIXvQcMknPmiVOxk5c2C_wt824Xrx56ld1dVdV1QWjC0ZZe7lemGkK-Q3w3QQYV4uGMrmYp43cq46Y7HgtWtrul5wLVS85Y4fVcUprSgukWx5VXw9gMsloxjQAEjOasE0-kTgQQxKEoXaQ_GoER2yMwY8rgiZDKcaMMQTTByAONt5CWXbE50Tmp7w12ceRDBGJxW2cEBLgZtcs5L2PIa4KKhALIaTT6mAwIcHZbzypXu9uX24e6qfn-8eb66faciFz3feCOwAJjWmEKAp60w2SAbVdx3hLmbKiERKUMu2yo63hsnVO9YIxB91S8pPqfMc7Yfz4hJT1On5iUZ10w5SSSgkuCupqh7IYU0IY9IT-3eBWM6pn6_Va_7Vez9b_TJv5yN1uHYqSjQfUyXoYLTiPYLN20f-P6BssHJic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199899535</pqid></control><display><type>article</type><title>Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells</title><source>ScienceDirect Freedom Collection</source><creator>Huang, Yu ; Memon, Kashan ; Chapal Hossain, S.M. ; Peng, Ji ; Wang, Jianye ; Shu, Zhiquan ; Ma, Kui ; Shen, Lingxiao ; Liu Gao, Frank ; Cao, Yunxia ; Hu, Peng ; Zhao, Gang</creator><creatorcontrib>Huang, Yu ; Memon, Kashan ; Chapal Hossain, S.M. ; Peng, Ji ; Wang, Jianye ; Shu, Zhiquan ; Ma, Kui ; Shen, Lingxiao ; Liu Gao, Frank ; Cao, Yunxia ; Hu, Peng ; Zhao, Gang</creatorcontrib><description>•We developed a self-designed cooling rate controllable device.•An experimental-modeling approach was established to demonstrate the temperature distributions during cryopreservation.•We used the natural killer T cells for cryopreservation to verify our approach.
Cryopreservation is the technique to preserve the biosamples at extremely low temperature. The optimal cooling rate is an important factor influencing the survival of biological samples during cryopreservation. In this study, we established a combined experimental-modeling approach for high precision prediction of the temperature distribution during cryopreservation of biosamples by simple passive cooling rate control device (PCD) instead of conventional liquid nitrogen (LNF) method that leads to uncontrolled rewarming and cell destruction. Moreover, the PCD method does not require any consumption of liquid nitrogen with minimum invigilation of the labor whereas the LNF approach needs this support. In our experiment, we have used PCD to cryopreserve the natural killer T (NKT) cells and also simulated the model with actual device dimensions and its properties. We systematically evaluate our results of the PCD method with the conventional LNF method by acquiring the viability and functions of the NKT cells after the cryopreservation. The PCD method proposes a high-efficiency, cost-effective, robust, and minimal labor approach for cryopreservation of the biosamples for preservation and transportation.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2018.10.128</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Biological properties ; Biomedical research ; Computer simulation ; Cooling ; Cooling rate ; Cryopreservation ; Heat transfer ; Heat transfer model ; Labor ; Liquid nitrogen ; Low temperature physics ; Natural killer T (NKT) cells ; Passive cooling rate-controlled device (PCD) ; Stability ; Temperature distribution ; Viability</subject><ispartof>Applied thermal engineering, 2019-02, Vol.148, p.768-776</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483</citedby><cites>FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Memon, Kashan</creatorcontrib><creatorcontrib>Chapal Hossain, S.M.</creatorcontrib><creatorcontrib>Peng, Ji</creatorcontrib><creatorcontrib>Wang, Jianye</creatorcontrib><creatorcontrib>Shu, Zhiquan</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Shen, Lingxiao</creatorcontrib><creatorcontrib>Liu Gao, Frank</creatorcontrib><creatorcontrib>Cao, Yunxia</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><title>Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells</title><title>Applied thermal engineering</title><description>•We developed a self-designed cooling rate controllable device.•An experimental-modeling approach was established to demonstrate the temperature distributions during cryopreservation.•We used the natural killer T cells for cryopreservation to verify our approach.
Cryopreservation is the technique to preserve the biosamples at extremely low temperature. The optimal cooling rate is an important factor influencing the survival of biological samples during cryopreservation. In this study, we established a combined experimental-modeling approach for high precision prediction of the temperature distribution during cryopreservation of biosamples by simple passive cooling rate control device (PCD) instead of conventional liquid nitrogen (LNF) method that leads to uncontrolled rewarming and cell destruction. Moreover, the PCD method does not require any consumption of liquid nitrogen with minimum invigilation of the labor whereas the LNF approach needs this support. In our experiment, we have used PCD to cryopreserve the natural killer T (NKT) cells and also simulated the model with actual device dimensions and its properties. We systematically evaluate our results of the PCD method with the conventional LNF method by acquiring the viability and functions of the NKT cells after the cryopreservation. The PCD method proposes a high-efficiency, cost-effective, robust, and minimal labor approach for cryopreservation of the biosamples for preservation and transportation.</description><subject>Biological properties</subject><subject>Biomedical research</subject><subject>Computer simulation</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cryopreservation</subject><subject>Heat transfer</subject><subject>Heat transfer model</subject><subject>Labor</subject><subject>Liquid nitrogen</subject><subject>Low temperature physics</subject><subject>Natural killer T (NKT) cells</subject><subject>Passive cooling rate-controlled device (PCD)</subject><subject>Stability</subject><subject>Temperature distribution</subject><subject>Viability</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKBDEQHETB5z8E9DprMtnMJOBFxBcIXvQcMknPmiVOxk5c2C_wt824Xrx56ld1dVdV1QWjC0ZZe7lemGkK-Q3w3QQYV4uGMrmYp43cq46Y7HgtWtrul5wLVS85Y4fVcUprSgukWx5VXw9gMsloxjQAEjOasE0-kTgQQxKEoXaQ_GoER2yMwY8rgiZDKcaMMQTTByAONt5CWXbE50Tmp7w12ceRDBGJxW2cEBLgZtcs5L2PIa4KKhALIaTT6mAwIcHZbzypXu9uX24e6qfn-8eb66faciFz3feCOwAJjWmEKAp60w2SAbVdx3hLmbKiERKUMu2yo63hsnVO9YIxB91S8pPqfMc7Yfz4hJT1On5iUZ10w5SSSgkuCupqh7IYU0IY9IT-3eBWM6pn6_Va_7Vez9b_TJv5yN1uHYqSjQfUyXoYLTiPYLN20f-P6BssHJic</recordid><startdate>20190205</startdate><enddate>20190205</enddate><creator>Huang, Yu</creator><creator>Memon, Kashan</creator><creator>Chapal Hossain, S.M.</creator><creator>Peng, Ji</creator><creator>Wang, Jianye</creator><creator>Shu, Zhiquan</creator><creator>Ma, Kui</creator><creator>Shen, Lingxiao</creator><creator>Liu Gao, Frank</creator><creator>Cao, Yunxia</creator><creator>Hu, Peng</creator><creator>Zhao, Gang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190205</creationdate><title>Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells</title><author>Huang, Yu ; Memon, Kashan ; Chapal Hossain, S.M. ; Peng, Ji ; Wang, Jianye ; Shu, Zhiquan ; Ma, Kui ; Shen, Lingxiao ; Liu Gao, Frank ; Cao, Yunxia ; Hu, Peng ; Zhao, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological properties</topic><topic>Biomedical research</topic><topic>Computer simulation</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cryopreservation</topic><topic>Heat transfer</topic><topic>Heat transfer model</topic><topic>Labor</topic><topic>Liquid nitrogen</topic><topic>Low temperature physics</topic><topic>Natural killer T (NKT) cells</topic><topic>Passive cooling rate-controlled device (PCD)</topic><topic>Stability</topic><topic>Temperature distribution</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Memon, Kashan</creatorcontrib><creatorcontrib>Chapal Hossain, S.M.</creatorcontrib><creatorcontrib>Peng, Ji</creatorcontrib><creatorcontrib>Wang, Jianye</creatorcontrib><creatorcontrib>Shu, Zhiquan</creatorcontrib><creatorcontrib>Ma, Kui</creatorcontrib><creatorcontrib>Shen, Lingxiao</creatorcontrib><creatorcontrib>Liu Gao, Frank</creatorcontrib><creatorcontrib>Cao, Yunxia</creatorcontrib><creatorcontrib>Hu, Peng</creatorcontrib><creatorcontrib>Zhao, Gang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yu</au><au>Memon, Kashan</au><au>Chapal Hossain, S.M.</au><au>Peng, Ji</au><au>Wang, Jianye</au><au>Shu, Zhiquan</au><au>Ma, Kui</au><au>Shen, Lingxiao</au><au>Liu Gao, Frank</au><au>Cao, Yunxia</au><au>Hu, Peng</au><au>Zhao, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-02-05</date><risdate>2019</risdate><volume>148</volume><spage>768</spage><epage>776</epage><pages>768-776</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•We developed a self-designed cooling rate controllable device.•An experimental-modeling approach was established to demonstrate the temperature distributions during cryopreservation.•We used the natural killer T cells for cryopreservation to verify our approach.
Cryopreservation is the technique to preserve the biosamples at extremely low temperature. The optimal cooling rate is an important factor influencing the survival of biological samples during cryopreservation. In this study, we established a combined experimental-modeling approach for high precision prediction of the temperature distribution during cryopreservation of biosamples by simple passive cooling rate control device (PCD) instead of conventional liquid nitrogen (LNF) method that leads to uncontrolled rewarming and cell destruction. Moreover, the PCD method does not require any consumption of liquid nitrogen with minimum invigilation of the labor whereas the LNF approach needs this support. In our experiment, we have used PCD to cryopreserve the natural killer T (NKT) cells and also simulated the model with actual device dimensions and its properties. We systematically evaluate our results of the PCD method with the conventional LNF method by acquiring the viability and functions of the NKT cells after the cryopreservation. The PCD method proposes a high-efficiency, cost-effective, robust, and minimal labor approach for cryopreservation of the biosamples for preservation and transportation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2018.10.128</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2019-02, Vol.148, p.768-776 |
issn | 1359-4311 1873-5606 |
language | eng |
recordid | cdi_proquest_journals_2199899535 |
source | ScienceDirect Freedom Collection |
subjects | Biological properties Biomedical research Computer simulation Cooling Cooling rate Cryopreservation Heat transfer Heat transfer model Labor Liquid nitrogen Low temperature physics Natural killer T (NKT) cells Passive cooling rate-controlled device (PCD) Stability Temperature distribution Viability |
title | Heat transfer analysis of a self-designed cooling rate controllable device and its application for cryopreservation of biological cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T15%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20analysis%20of%20a%20self-designed%20cooling%20rate%20controllable%20device%20and%20its%20application%20for%20cryopreservation%20of%20biological%20cells&rft.jtitle=Applied%20thermal%20engineering&rft.au=Huang,%20Yu&rft.date=2019-02-05&rft.volume=148&rft.spage=768&rft.epage=776&rft.pages=768-776&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2018.10.128&rft_dat=%3Cproquest_cross%3E2199899535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-bb53dee8e2a255874ba7f81e0c77136019c5258e99a64706a386dd9b511de7483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199899535&rft_id=info:pmid/&rfr_iscdi=true |