Loading…

Prediction of Sorption Capacity of Activated Carbons

We present the results of mathematical modeling of quantitative relationship between the adsorption capacity of activated carbons and the partition coefficients of adsorbates in the n -octanol–water system. It has been found that the partition coefficients of adsorbates are highly informative descri...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of general chemistry 2018-12, Vol.88 (13), p.2928-2933
Main Authors: Frumin, G. T., Bolotova, N. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c335t-436641341789bf7b168fd3c52c571d7feebe3c4a750fd4f7703884b306bd919f3
container_end_page 2933
container_issue 13
container_start_page 2928
container_title Russian journal of general chemistry
container_volume 88
creator Frumin, G. T.
Bolotova, N. L.
description We present the results of mathematical modeling of quantitative relationship between the adsorption capacity of activated carbons and the partition coefficients of adsorbates in the n -octanol–water system. It has been found that the partition coefficients of adsorbates are highly informative descriptors in the mathematical models for prediction of the adsorption capacity of activated carbons. The empirical linear regression equation relating the similarity coefficients and the partition coefficients of adsorbates can be applied for the prediction tasks.
doi_str_mv 10.1134/S1070363218130169
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2199952523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A725787146</galeid><sourcerecordid>A725787146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-436641341789bf7b168fd3c52c571d7feebe3c4a750fd4f7703884b306bd919f3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvB89ZMkk2yx1L8BwWF6jlks0lJaTdrshX67c1aoYhKDhnee7_MZBC6BjwFoOx2CVhgyikBCRQDr07QCDiWBaUlPs11tovBP0cXKa0xBow5GSH2Em3jTe9DOwlusgyx-6rnutPG9_tBnGX7Q_e2yWqsQ5su0ZnTm2Svvu8xeru_e50_Fovnh6f5bFGY3LUvGOWc5eFAyKp2ogYuXUNNSUwpoBHO2tpSw7QosWuYE_kDUrKaYl43FVSOjtHN4d0uhvedTb1ah11sc0tFoKqqkpSEHlMrvbHKty70UZutT0bNBCmFFMB4Tk3_SOXT2K03obXOZ_0HAAfAxJBStE510W913CvAati5-rXzzJADk3K2Xdl4HPh_6BOQHn8y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199952523</pqid></control><display><type>article</type><title>Prediction of Sorption Capacity of Activated Carbons</title><source>Springer Nature</source><creator>Frumin, G. T. ; Bolotova, N. L.</creator><creatorcontrib>Frumin, G. T. ; Bolotova, N. L.</creatorcontrib><description>We present the results of mathematical modeling of quantitative relationship between the adsorption capacity of activated carbons and the partition coefficients of adsorbates in the n -octanol–water system. It has been found that the partition coefficients of adsorbates are highly informative descriptors in the mathematical models for prediction of the adsorption capacity of activated carbons. The empirical linear regression equation relating the similarity coefficients and the partition coefficients of adsorbates can be applied for the prediction tasks.</description><identifier>ISSN: 1070-3632</identifier><identifier>EISSN: 1608-3350</identifier><identifier>DOI: 10.1134/S1070363218130169</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activated carbon ; Adsorbates ; Adsorption ; Analysis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Coefficients ; Empirical equations ; Mathematical models ; Methylene blue ; Octanol ; Partitions ; Purification ; Water ; Wine</subject><ispartof>Russian journal of general chemistry, 2018-12, Vol.88 (13), p.2928-2933</ispartof><rights>Pleiades Publishing, Ltd 2019</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-436641341789bf7b168fd3c52c571d7feebe3c4a750fd4f7703884b306bd919f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Frumin, G. T.</creatorcontrib><creatorcontrib>Bolotova, N. L.</creatorcontrib><title>Prediction of Sorption Capacity of Activated Carbons</title><title>Russian journal of general chemistry</title><addtitle>Russ J Gen Chem</addtitle><description>We present the results of mathematical modeling of quantitative relationship between the adsorption capacity of activated carbons and the partition coefficients of adsorbates in the n -octanol–water system. It has been found that the partition coefficients of adsorbates are highly informative descriptors in the mathematical models for prediction of the adsorption capacity of activated carbons. The empirical linear regression equation relating the similarity coefficients and the partition coefficients of adsorbates can be applied for the prediction tasks.</description><subject>Activated carbon</subject><subject>Adsorbates</subject><subject>Adsorption</subject><subject>Analysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Coefficients</subject><subject>Empirical equations</subject><subject>Mathematical models</subject><subject>Methylene blue</subject><subject>Octanol</subject><subject>Partitions</subject><subject>Purification</subject><subject>Water</subject><subject>Wine</subject><issn>1070-3632</issn><issn>1608-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvB89ZMkk2yx1L8BwWF6jlks0lJaTdrshX67c1aoYhKDhnee7_MZBC6BjwFoOx2CVhgyikBCRQDr07QCDiWBaUlPs11tovBP0cXKa0xBow5GSH2Em3jTe9DOwlusgyx-6rnutPG9_tBnGX7Q_e2yWqsQ5su0ZnTm2Svvu8xeru_e50_Fovnh6f5bFGY3LUvGOWc5eFAyKp2ogYuXUNNSUwpoBHO2tpSw7QosWuYE_kDUrKaYl43FVSOjtHN4d0uhvedTb1ah11sc0tFoKqqkpSEHlMrvbHKty70UZutT0bNBCmFFMB4Tk3_SOXT2K03obXOZ_0HAAfAxJBStE510W913CvAati5-rXzzJADk3K2Xdl4HPh_6BOQHn8y</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Frumin, G. T.</creator><creator>Bolotova, N. L.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Prediction of Sorption Capacity of Activated Carbons</title><author>Frumin, G. T. ; Bolotova, N. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-436641341789bf7b168fd3c52c571d7feebe3c4a750fd4f7703884b306bd919f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Activated carbon</topic><topic>Adsorbates</topic><topic>Adsorption</topic><topic>Analysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Coefficients</topic><topic>Empirical equations</topic><topic>Mathematical models</topic><topic>Methylene blue</topic><topic>Octanol</topic><topic>Partitions</topic><topic>Purification</topic><topic>Water</topic><topic>Wine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frumin, G. T.</creatorcontrib><creatorcontrib>Bolotova, N. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of general chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frumin, G. T.</au><au>Bolotova, N. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Sorption Capacity of Activated Carbons</atitle><jtitle>Russian journal of general chemistry</jtitle><stitle>Russ J Gen Chem</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>88</volume><issue>13</issue><spage>2928</spage><epage>2933</epage><pages>2928-2933</pages><issn>1070-3632</issn><eissn>1608-3350</eissn><abstract>We present the results of mathematical modeling of quantitative relationship between the adsorption capacity of activated carbons and the partition coefficients of adsorbates in the n -octanol–water system. It has been found that the partition coefficients of adsorbates are highly informative descriptors in the mathematical models for prediction of the adsorption capacity of activated carbons. The empirical linear regression equation relating the similarity coefficients and the partition coefficients of adsorbates can be applied for the prediction tasks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1070363218130169</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-3632
ispartof Russian journal of general chemistry, 2018-12, Vol.88 (13), p.2928-2933
issn 1070-3632
1608-3350
language eng
recordid cdi_proquest_journals_2199952523
source Springer Nature
subjects Activated carbon
Adsorbates
Adsorption
Analysis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Coefficients
Empirical equations
Mathematical models
Methylene blue
Octanol
Partitions
Purification
Water
Wine
title Prediction of Sorption Capacity of Activated Carbons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Sorption%20Capacity%20of%20Activated%20Carbons&rft.jtitle=Russian%20journal%20of%20general%20chemistry&rft.au=Frumin,%20G.%20T.&rft.date=2018-12-01&rft.volume=88&rft.issue=13&rft.spage=2928&rft.epage=2933&rft.pages=2928-2933&rft.issn=1070-3632&rft.eissn=1608-3350&rft_id=info:doi/10.1134/S1070363218130169&rft_dat=%3Cgale_proqu%3EA725787146%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-436641341789bf7b168fd3c52c571d7feebe3c4a750fd4f7703884b306bd919f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2199952523&rft_id=info:pmid/&rft_galeid=A725787146&rfr_iscdi=true