Loading…

Difference convergence on partial metric space

The concept of partial metric space is a minimal generalization of a metric space (X, d), where for each x ∈ X, d(x, x) does not need to be zero, in other terms is known as non-self distance. In this conference paper we defined some new definitions on partial metric space using by first difference o...

Full description

Saved in:
Bibliographic Details
Main Authors: Esi, Ayten, Hanaç, Esen, Esi, Ayhan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2086
creator Esi, Ayten
Hanaç, Esen
Esi, Ayhan
description The concept of partial metric space is a minimal generalization of a metric space (X, d), where for each x ∈ X, d(x, x) does not need to be zero, in other terms is known as non-self distance. In this conference paper we defined some new definitions on partial metric space using by first difference of a sequence (xk) in partial metric space and examined some properties of these definitions..
doi_str_mv 10.1063/1.5095101
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2201916013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201916013</sourcerecordid><originalsourceid>FETCH-LOGICAL-p288t-13c77b3c23472e077f6231ebe96c194a419cf955a76440a1d29c75f966a346db3</originalsourceid><addsrcrecordid>eNp9kM1KxDAYRYMoWEcXvkHBndD6ffltljL-woAbBXchTRPJMNPGtDPg2zs6A-5c3bs43AuHkEuEGkGyG6wFaIGAR6RAIbBSEuUxKQA0ryhn76fkbByXAFQr1RSkvosh-Ox750s39FufP3770JfJ5inaVbn2U46uHJN1_pycBLsa_cUhZ-Tt4f51_lQtXh6f57eLKtGmmSpkTqmWOcq4oh6UCpIy9K3X0qHmlqN2QQthleQcLHZUOyWCltIyLruWzcjVfjfl4XPjx8ksh03ud5eGUkCNEpDtqOs9Nbo42SkOvUk5rm3-Mgjmx4dBc_DxH7wd8h9oUhfYN5W1Xpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2201916013</pqid></control><display><type>conference_proceeding</type><title>Difference convergence on partial metric space</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Esi, Ayten ; Hanaç, Esen ; Esi, Ayhan</creator><contributor>Kočinac, Ljubiša D.R. ; Ersan, Sibel ; Harte, Robin ; Cao, Jiling ; Savas, Ekrem ; Cakalli, Huseyin ; Yildiz, Sebnem</contributor><creatorcontrib>Esi, Ayten ; Hanaç, Esen ; Esi, Ayhan ; Kočinac, Ljubiša D.R. ; Ersan, Sibel ; Harte, Robin ; Cao, Jiling ; Savas, Ekrem ; Cakalli, Huseyin ; Yildiz, Sebnem</creatorcontrib><description>The concept of partial metric space is a minimal generalization of a metric space (X, d), where for each x ∈ X, d(x, x) does not need to be zero, in other terms is known as non-self distance. In this conference paper we defined some new definitions on partial metric space using by first difference of a sequence (xk) in partial metric space and examined some properties of these definitions..</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5095101</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Metric space ; Quotas ; Traveling salesman problem</subject><ispartof>AIP conference proceedings, 2019, Vol.2086 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Kočinac, Ljubiša D.R.</contributor><contributor>Ersan, Sibel</contributor><contributor>Harte, Robin</contributor><contributor>Cao, Jiling</contributor><contributor>Savas, Ekrem</contributor><contributor>Cakalli, Huseyin</contributor><contributor>Yildiz, Sebnem</contributor><creatorcontrib>Esi, Ayten</creatorcontrib><creatorcontrib>Hanaç, Esen</creatorcontrib><creatorcontrib>Esi, Ayhan</creatorcontrib><title>Difference convergence on partial metric space</title><title>AIP conference proceedings</title><description>The concept of partial metric space is a minimal generalization of a metric space (X, d), where for each x ∈ X, d(x, x) does not need to be zero, in other terms is known as non-self distance. In this conference paper we defined some new definitions on partial metric space using by first difference of a sequence (xk) in partial metric space and examined some properties of these definitions..</description><subject>Metric space</subject><subject>Quotas</subject><subject>Traveling salesman problem</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KxDAYRYMoWEcXvkHBndD6ffltljL-woAbBXchTRPJMNPGtDPg2zs6A-5c3bs43AuHkEuEGkGyG6wFaIGAR6RAIbBSEuUxKQA0ryhn76fkbByXAFQr1RSkvosh-Ox750s39FufP3770JfJ5inaVbn2U46uHJN1_pycBLsa_cUhZ-Tt4f51_lQtXh6f57eLKtGmmSpkTqmWOcq4oh6UCpIy9K3X0qHmlqN2QQthleQcLHZUOyWCltIyLruWzcjVfjfl4XPjx8ksh03ud5eGUkCNEpDtqOs9Nbo42SkOvUk5rm3-Mgjmx4dBc_DxH7wd8h9oUhfYN5W1Xpo</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>Esi, Ayten</creator><creator>Hanaç, Esen</creator><creator>Esi, Ayhan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190402</creationdate><title>Difference convergence on partial metric space</title><author>Esi, Ayten ; Hanaç, Esen ; Esi, Ayhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p288t-13c77b3c23472e077f6231ebe96c194a419cf955a76440a1d29c75f966a346db3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Metric space</topic><topic>Quotas</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esi, Ayten</creatorcontrib><creatorcontrib>Hanaç, Esen</creatorcontrib><creatorcontrib>Esi, Ayhan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esi, Ayten</au><au>Hanaç, Esen</au><au>Esi, Ayhan</au><au>Kočinac, Ljubiša D.R.</au><au>Ersan, Sibel</au><au>Harte, Robin</au><au>Cao, Jiling</au><au>Savas, Ekrem</au><au>Cakalli, Huseyin</au><au>Yildiz, Sebnem</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Difference convergence on partial metric space</atitle><btitle>AIP conference proceedings</btitle><date>2019-04-02</date><risdate>2019</risdate><volume>2086</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The concept of partial metric space is a minimal generalization of a metric space (X, d), where for each x ∈ X, d(x, x) does not need to be zero, in other terms is known as non-self distance. In this conference paper we defined some new definitions on partial metric space using by first difference of a sequence (xk) in partial metric space and examined some properties of these definitions..</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5095101</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2086 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2201916013
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Metric space
Quotas
Traveling salesman problem
title Difference convergence on partial metric space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Difference%20convergence%20on%20partial%20metric%20space&rft.btitle=AIP%20conference%20proceedings&rft.au=Esi,%20Ayten&rft.date=2019-04-02&rft.volume=2086&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5095101&rft_dat=%3Cproquest_scita%3E2201916013%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p288t-13c77b3c23472e077f6231ebe96c194a419cf955a76440a1d29c75f966a346db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2201916013&rft_id=info:pmid/&rfr_iscdi=true