Loading…

On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion

The integration of untethered, multi‐stimuli responsive actuation into soft microrobotic devices is a goal in the development of “smart” materials. This manuscript reports on a dual‐stimuli responsive bilayer actuator consisting of a light responsive liquid crystal network (LCN) and a magnetic respo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced optical materials 2019-04, Vol.7 (7), p.n/a
Main Authors: Pilz da Cunha, Marina, Foelen, Yari, Engels, Tom A. P., Papamichou, Kleopatra, Hagenbeek, Michiel, Debije, Michael G., Schenning, Albert P. H. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3
cites cdi_FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced optical materials
container_volume 7
creator Pilz da Cunha, Marina
Foelen, Yari
Engels, Tom A. P.
Papamichou, Kleopatra
Hagenbeek, Michiel
Debije, Michael G.
Schenning, Albert P. H. J.
description The integration of untethered, multi‐stimuli responsive actuation into soft microrobotic devices is a goal in the development of “smart” materials. This manuscript reports on a dual‐stimuli responsive bilayer actuator consisting of a light responsive liquid crystal network (LCN) and a magnetic responsive polydimethylsiloxane (PDMS) composite. This design is of facile fabrication with ample design freedom, using no additional adhesion layers. Untethered control of the bilayer permits motions including bending and rotation, steered individually or in synchronization. Through a systematic study the direct impact of the PDMS layer was elucidated on the light triggered rate of actuation and maximum deformation amplitude of the LCN film. The alignment (homeotropic or planar) of the LCN has a profound effect on the resulting bilayer actuation. It is demonstrated, both experimentally and theoretically, that the rates of sample heating and actuation are directly correlated and highlight the critical role of the PDMS as a heat sink. The maximum amplitude of displacement of the bilayer is tied to the stiffness, being inversely correlated to the PDMS thickness to the third power. These results give insights and provide straightforward design rules to fabricate bilayer actuators with programmed multi‐responsive properties. Bilayers are a popular choice towards the design of untethered multi‐stimuli responsive materials. Doping the rubbery polydimethylsiloxane (PDMS) matrix of a liquid crystal/PDMS bilayer, allows for additional stimuli‐triggered actuation such as magnetic response. A detailed study of the photo‐responsive actuation of liquid crystal/PDMS bilayers provides theoretical insight and a design toolbox towards bilayer actuators with programmed multi‐responsive properties.
doi_str_mv 10.1002/adom.201801604
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202743956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202743956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhYMoWGq3rgfcmjqvvJZ9-IKWitp1mGRu2pR0pp2ZWLLzJ_gb_SUmVNSdq3MPfOdcOJ53SfCQYExvhNTbIcUkxiTE_MTrUZIEPsEROf1zn3sDazcY49awhEc977BQaKkcuDUYkNdoWosKzcVKgdOf7x9IKIme1tppA3anlS3fAM3KfV1KNDGNdS09LivRgEGj3NWiBS16WetDqVZoDEp22pU8aydcZ-balVpdeGeFqCwMvrXvLe9uXycP_mxx_zgZzfycBRH3eZYUjIecRQXHGcRQQAixkHmQRIzmmQgFyTmNsJQ04RkLCRGEABeUihhnkvW9q2Pvzuh9DdalG10b1b5MKcU04iwJwpYaHqncaGsNFOnOlFthmpTgtNs37fZNf_ZtA8kxcCgraP6h09F0Mf_NfgEYtYC-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202743956</pqid></control><display><type>article</type><title>On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Pilz da Cunha, Marina ; Foelen, Yari ; Engels, Tom A. P. ; Papamichou, Kleopatra ; Hagenbeek, Michiel ; Debije, Michael G. ; Schenning, Albert P. H. J.</creator><creatorcontrib>Pilz da Cunha, Marina ; Foelen, Yari ; Engels, Tom A. P. ; Papamichou, Kleopatra ; Hagenbeek, Michiel ; Debije, Michael G. ; Schenning, Albert P. H. J.</creatorcontrib><description>The integration of untethered, multi‐stimuli responsive actuation into soft microrobotic devices is a goal in the development of “smart” materials. This manuscript reports on a dual‐stimuli responsive bilayer actuator consisting of a light responsive liquid crystal network (LCN) and a magnetic responsive polydimethylsiloxane (PDMS) composite. This design is of facile fabrication with ample design freedom, using no additional adhesion layers. Untethered control of the bilayer permits motions including bending and rotation, steered individually or in synchronization. Through a systematic study the direct impact of the PDMS layer was elucidated on the light triggered rate of actuation and maximum deformation amplitude of the LCN film. The alignment (homeotropic or planar) of the LCN has a profound effect on the resulting bilayer actuation. It is demonstrated, both experimentally and theoretically, that the rates of sample heating and actuation are directly correlated and highlight the critical role of the PDMS as a heat sink. The maximum amplitude of displacement of the bilayer is tied to the stiffness, being inversely correlated to the PDMS thickness to the third power. These results give insights and provide straightforward design rules to fabricate bilayer actuators with programmed multi‐responsive properties. Bilayers are a popular choice towards the design of untethered multi‐stimuli responsive materials. Doping the rubbery polydimethylsiloxane (PDMS) matrix of a liquid crystal/PDMS bilayer, allows for additional stimuli‐triggered actuation such as magnetic response. A detailed study of the photo‐responsive actuation of liquid crystal/PDMS bilayers provides theoretical insight and a design toolbox towards bilayer actuators with programmed multi‐responsive properties.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201801604</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Actuators ; Amplitudes ; Deformation ; Liquid crystals ; magnetic response ; Materials science ; Optics ; photoresponse ; Polydimethylsiloxane ; Product design ; Silicone resins ; Stiffness ; Stimuli ; stimuli‐responsive materials ; Synchronism</subject><ispartof>Advanced optical materials, 2019-04, Vol.7 (7), p.n/a</ispartof><rights>2019 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3</citedby><cites>FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3</cites><orcidid>0000-0002-3485-1984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pilz da Cunha, Marina</creatorcontrib><creatorcontrib>Foelen, Yari</creatorcontrib><creatorcontrib>Engels, Tom A. P.</creatorcontrib><creatorcontrib>Papamichou, Kleopatra</creatorcontrib><creatorcontrib>Hagenbeek, Michiel</creatorcontrib><creatorcontrib>Debije, Michael G.</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J.</creatorcontrib><title>On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion</title><title>Advanced optical materials</title><description>The integration of untethered, multi‐stimuli responsive actuation into soft microrobotic devices is a goal in the development of “smart” materials. This manuscript reports on a dual‐stimuli responsive bilayer actuator consisting of a light responsive liquid crystal network (LCN) and a magnetic responsive polydimethylsiloxane (PDMS) composite. This design is of facile fabrication with ample design freedom, using no additional adhesion layers. Untethered control of the bilayer permits motions including bending and rotation, steered individually or in synchronization. Through a systematic study the direct impact of the PDMS layer was elucidated on the light triggered rate of actuation and maximum deformation amplitude of the LCN film. The alignment (homeotropic or planar) of the LCN has a profound effect on the resulting bilayer actuation. It is demonstrated, both experimentally and theoretically, that the rates of sample heating and actuation are directly correlated and highlight the critical role of the PDMS as a heat sink. The maximum amplitude of displacement of the bilayer is tied to the stiffness, being inversely correlated to the PDMS thickness to the third power. These results give insights and provide straightforward design rules to fabricate bilayer actuators with programmed multi‐responsive properties. Bilayers are a popular choice towards the design of untethered multi‐stimuli responsive materials. Doping the rubbery polydimethylsiloxane (PDMS) matrix of a liquid crystal/PDMS bilayer, allows for additional stimuli‐triggered actuation such as magnetic response. A detailed study of the photo‐responsive actuation of liquid crystal/PDMS bilayers provides theoretical insight and a design toolbox towards bilayer actuators with programmed multi‐responsive properties.</description><subject>Actuation</subject><subject>Actuators</subject><subject>Amplitudes</subject><subject>Deformation</subject><subject>Liquid crystals</subject><subject>magnetic response</subject><subject>Materials science</subject><subject>Optics</subject><subject>photoresponse</subject><subject>Polydimethylsiloxane</subject><subject>Product design</subject><subject>Silicone resins</subject><subject>Stiffness</subject><subject>Stimuli</subject><subject>stimuli‐responsive materials</subject><subject>Synchronism</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEtLw0AUhYMoWGq3rgfcmjqvvJZ9-IKWitp1mGRu2pR0pp2ZWLLzJ_gb_SUmVNSdq3MPfOdcOJ53SfCQYExvhNTbIcUkxiTE_MTrUZIEPsEROf1zn3sDazcY49awhEc977BQaKkcuDUYkNdoWosKzcVKgdOf7x9IKIme1tppA3anlS3fAM3KfV1KNDGNdS09LivRgEGj3NWiBS16WetDqVZoDEp22pU8aydcZ-balVpdeGeFqCwMvrXvLe9uXycP_mxx_zgZzfycBRH3eZYUjIecRQXHGcRQQAixkHmQRIzmmQgFyTmNsJQ04RkLCRGEABeUihhnkvW9q2Pvzuh9DdalG10b1b5MKcU04iwJwpYaHqncaGsNFOnOlFthmpTgtNs37fZNf_ZtA8kxcCgraP6h09F0Mf_NfgEYtYC-</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Pilz da Cunha, Marina</creator><creator>Foelen, Yari</creator><creator>Engels, Tom A. P.</creator><creator>Papamichou, Kleopatra</creator><creator>Hagenbeek, Michiel</creator><creator>Debije, Michael G.</creator><creator>Schenning, Albert P. H. J.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid></search><sort><creationdate>20190401</creationdate><title>On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion</title><author>Pilz da Cunha, Marina ; Foelen, Yari ; Engels, Tom A. P. ; Papamichou, Kleopatra ; Hagenbeek, Michiel ; Debije, Michael G. ; Schenning, Albert P. H. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Actuators</topic><topic>Amplitudes</topic><topic>Deformation</topic><topic>Liquid crystals</topic><topic>magnetic response</topic><topic>Materials science</topic><topic>Optics</topic><topic>photoresponse</topic><topic>Polydimethylsiloxane</topic><topic>Product design</topic><topic>Silicone resins</topic><topic>Stiffness</topic><topic>Stimuli</topic><topic>stimuli‐responsive materials</topic><topic>Synchronism</topic><toplevel>online_resources</toplevel><creatorcontrib>Pilz da Cunha, Marina</creatorcontrib><creatorcontrib>Foelen, Yari</creatorcontrib><creatorcontrib>Engels, Tom A. P.</creatorcontrib><creatorcontrib>Papamichou, Kleopatra</creatorcontrib><creatorcontrib>Hagenbeek, Michiel</creatorcontrib><creatorcontrib>Debije, Michael G.</creatorcontrib><creatorcontrib>Schenning, Albert P. H. J.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pilz da Cunha, Marina</au><au>Foelen, Yari</au><au>Engels, Tom A. P.</au><au>Papamichou, Kleopatra</au><au>Hagenbeek, Michiel</au><au>Debije, Michael G.</au><au>Schenning, Albert P. H. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion</atitle><jtitle>Advanced optical materials</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>7</volume><issue>7</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>The integration of untethered, multi‐stimuli responsive actuation into soft microrobotic devices is a goal in the development of “smart” materials. This manuscript reports on a dual‐stimuli responsive bilayer actuator consisting of a light responsive liquid crystal network (LCN) and a magnetic responsive polydimethylsiloxane (PDMS) composite. This design is of facile fabrication with ample design freedom, using no additional adhesion layers. Untethered control of the bilayer permits motions including bending and rotation, steered individually or in synchronization. Through a systematic study the direct impact of the PDMS layer was elucidated on the light triggered rate of actuation and maximum deformation amplitude of the LCN film. The alignment (homeotropic or planar) of the LCN has a profound effect on the resulting bilayer actuation. It is demonstrated, both experimentally and theoretically, that the rates of sample heating and actuation are directly correlated and highlight the critical role of the PDMS as a heat sink. The maximum amplitude of displacement of the bilayer is tied to the stiffness, being inversely correlated to the PDMS thickness to the third power. These results give insights and provide straightforward design rules to fabricate bilayer actuators with programmed multi‐responsive properties. Bilayers are a popular choice towards the design of untethered multi‐stimuli responsive materials. Doping the rubbery polydimethylsiloxane (PDMS) matrix of a liquid crystal/PDMS bilayer, allows for additional stimuli‐triggered actuation such as magnetic response. A detailed study of the photo‐responsive actuation of liquid crystal/PDMS bilayers provides theoretical insight and a design toolbox towards bilayer actuators with programmed multi‐responsive properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.201801604</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3485-1984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2019-04, Vol.7 (7), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2202743956
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Actuation
Actuators
Amplitudes
Deformation
Liquid crystals
magnetic response
Materials science
Optics
photoresponse
Polydimethylsiloxane
Product design
Silicone resins
Stiffness
Stimuli
stimuli‐responsive materials
Synchronism
title On Untethered, Dual Magneto‐ and Photoresponsive Liquid Crystal Bilayer Actuators Showing Bending and Rotating Motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Untethered,%20Dual%20Magneto%E2%80%90%20and%20Photoresponsive%20Liquid%20Crystal%20Bilayer%20Actuators%20Showing%20Bending%20and%20Rotating%20Motion&rft.jtitle=Advanced%20optical%20materials&rft.au=Pilz%20da%20Cunha,%20Marina&rft.date=2019-04-01&rft.volume=7&rft.issue=7&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201801604&rft_dat=%3Cproquest_cross%3E2202743956%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3574-4b9f346437f40be8efe6e8adc59732cba6a1c4270dd294b3611a11e4a22a80bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202743956&rft_id=info:pmid/&rfr_iscdi=true