Loading…
Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach
Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyz...
Saved in:
Published in: | International journal of robust and nonlinear control 2019-05, Vol.29 (8), p.2471-2493 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3 |
container_end_page | 2493 |
container_issue | 8 |
container_start_page | 2471 |
container_title | International journal of robust and nonlinear control |
container_volume | 29 |
creator | Yang, Kaijun Zheng, Jun Zhu, Guchuan |
description | Summary
This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach. |
doi_str_mv | 10.1002/rnc.4504 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202932025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202932025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1_7a78VaKVaEoiJ7DbDbR1O1mm-wi--1NW69eZgbmN-8ND6FrSmaUEHYXWj0TOREnaEKJlBllXJ7uZyGzUjJ-ji5i3BCSdkxMkF7Ecdv1vnca-6Hvhh73AfS3az-x9QED1g3EiL3F0Wxd41oDAXcQoPJNujG7AXrn23iPFwcCWmjGpAYNhq4LHvTXJTqz0ERz9den6GP18L58ytavj8_LxTrTnBORCVYaKgpNa9BEQ82LuWbSzC0rclaVOeEVtWVeFBWzNQMAPq9B0pyJQtREAp-im6Nust0NJvZq44eQ_omKMcIkTyVP1O2R0sHHGIxVXXBbCKOiRO0jVClCtY8wodkR_XGNGf_l1NvL8sD_AhgGcw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202932025</pqid></control><display><type>article</type><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><source>Wiley</source><creator>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</creator><creatorcontrib>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</creatorcontrib><description>Summary
This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4504</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Adomian decomposition method ; Asymptotic properties ; Computer simulation ; Control stability ; Convergence ; Cybernetics ; differential flatness ; Dynamic control ; Inverse design ; Mathematical analysis ; semilinear parabolic equations ; Stability analysis ; Tracking ; Trajectory planning ; zero dynamics</subject><ispartof>International journal of robust and nonlinear control, 2019-05, Vol.29 (8), p.2471-2493</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</citedby><cites>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</cites><orcidid>0000-0003-2117-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Kaijun</creatorcontrib><creatorcontrib>Zheng, Jun</creatorcontrib><creatorcontrib>Zhu, Guchuan</creatorcontrib><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><title>International journal of robust and nonlinear control</title><description>Summary
This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</description><subject>Actuation</subject><subject>Adomian decomposition method</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Convergence</subject><subject>Cybernetics</subject><subject>differential flatness</subject><subject>Dynamic control</subject><subject>Inverse design</subject><subject>Mathematical analysis</subject><subject>semilinear parabolic equations</subject><subject>Stability analysis</subject><subject>Tracking</subject><subject>Trajectory planning</subject><subject>zero dynamics</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1_7a78VaKVaEoiJ7DbDbR1O1mm-wi--1NW69eZgbmN-8ND6FrSmaUEHYXWj0TOREnaEKJlBllXJ7uZyGzUjJ-ji5i3BCSdkxMkF7Ecdv1vnca-6Hvhh73AfS3az-x9QED1g3EiL3F0Wxd41oDAXcQoPJNujG7AXrn23iPFwcCWmjGpAYNhq4LHvTXJTqz0ERz9den6GP18L58ytavj8_LxTrTnBORCVYaKgpNa9BEQ82LuWbSzC0rclaVOeEVtWVeFBWzNQMAPq9B0pyJQtREAp-im6Nust0NJvZq44eQ_omKMcIkTyVP1O2R0sHHGIxVXXBbCKOiRO0jVClCtY8wodkR_XGNGf_l1NvL8sD_AhgGcw0</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Yang, Kaijun</creator><creator>Zheng, Jun</creator><creator>Zhu, Guchuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2117-6796</orcidid></search><sort><creationdate>20190525</creationdate><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><author>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Adomian decomposition method</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Convergence</topic><topic>Cybernetics</topic><topic>differential flatness</topic><topic>Dynamic control</topic><topic>Inverse design</topic><topic>Mathematical analysis</topic><topic>semilinear parabolic equations</topic><topic>Stability analysis</topic><topic>Tracking</topic><topic>Trajectory planning</topic><topic>zero dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kaijun</creatorcontrib><creatorcontrib>Zheng, Jun</creatorcontrib><creatorcontrib>Zhu, Guchuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kaijun</au><au>Zheng, Jun</au><au>Zhu, Guchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2019-05-25</date><risdate>2019</risdate><volume>29</volume><issue>8</issue><spage>2471</spage><epage>2493</epage><pages>2471-2493</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2117-6796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2019-05, Vol.29 (8), p.2471-2493 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2202932025 |
source | Wiley |
subjects | Actuation Adomian decomposition method Asymptotic properties Computer simulation Control stability Convergence Cybernetics differential flatness Dynamic control Inverse design Mathematical analysis semilinear parabolic equations Stability analysis Tracking Trajectory planning zero dynamics |
title | Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20output%20tracking%20for%20a%20class%20of%20semilinear%20parabolic%20equations:%20A%20semianalytical%20approach&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Yang,%20Kaijun&rft.date=2019-05-25&rft.volume=29&rft.issue=8&rft.spage=2471&rft.epage=2493&rft.pages=2471-2493&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4504&rft_dat=%3Cproquest_cross%3E2202932025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202932025&rft_id=info:pmid/&rfr_iscdi=true |