Loading…

Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach

Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyz...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2019-05, Vol.29 (8), p.2471-2493
Main Authors: Yang, Kaijun, Zheng, Jun, Zhu, Guchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3
cites cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3
container_end_page 2493
container_issue 8
container_start_page 2471
container_title International journal of robust and nonlinear control
container_volume 29
creator Yang, Kaijun
Zheng, Jun
Zhu, Guchuan
description Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.
doi_str_mv 10.1002/rnc.4504
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2202932025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202932025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1_7a78VaKVaEoiJ7DbDbR1O1mm-wi--1NW69eZgbmN-8ND6FrSmaUEHYXWj0TOREnaEKJlBllXJ7uZyGzUjJ-ji5i3BCSdkxMkF7Ecdv1vnca-6Hvhh73AfS3az-x9QED1g3EiL3F0Wxd41oDAXcQoPJNujG7AXrn23iPFwcCWmjGpAYNhq4LHvTXJTqz0ERz9den6GP18L58ytavj8_LxTrTnBORCVYaKgpNa9BEQ82LuWbSzC0rclaVOeEVtWVeFBWzNQMAPq9B0pyJQtREAp-im6Nust0NJvZq44eQ_omKMcIkTyVP1O2R0sHHGIxVXXBbCKOiRO0jVClCtY8wodkR_XGNGf_l1NvL8sD_AhgGcw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202932025</pqid></control><display><type>article</type><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><source>Wiley</source><creator>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</creator><creatorcontrib>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</creatorcontrib><description>Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.4504</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Actuation ; Adomian decomposition method ; Asymptotic properties ; Computer simulation ; Control stability ; Convergence ; Cybernetics ; differential flatness ; Dynamic control ; Inverse design ; Mathematical analysis ; semilinear parabolic equations ; Stability analysis ; Tracking ; Trajectory planning ; zero dynamics</subject><ispartof>International journal of robust and nonlinear control, 2019-05, Vol.29 (8), p.2471-2493</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</citedby><cites>FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</cites><orcidid>0000-0003-2117-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Kaijun</creatorcontrib><creatorcontrib>Zheng, Jun</creatorcontrib><creatorcontrib>Zhu, Guchuan</creatorcontrib><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><title>International journal of robust and nonlinear control</title><description>Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</description><subject>Actuation</subject><subject>Adomian decomposition method</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Convergence</subject><subject>Cybernetics</subject><subject>differential flatness</subject><subject>Dynamic control</subject><subject>Inverse design</subject><subject>Mathematical analysis</subject><subject>semilinear parabolic equations</subject><subject>Stability analysis</subject><subject>Tracking</subject><subject>Trajectory planning</subject><subject>zero dynamics</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI1_7a78VaKVaEoiJ7DbDbR1O1mm-wi--1NW69eZgbmN-8ND6FrSmaUEHYXWj0TOREnaEKJlBllXJ7uZyGzUjJ-ji5i3BCSdkxMkF7Ecdv1vnca-6Hvhh73AfS3az-x9QED1g3EiL3F0Wxd41oDAXcQoPJNujG7AXrn23iPFwcCWmjGpAYNhq4LHvTXJTqz0ERz9den6GP18L58ytavj8_LxTrTnBORCVYaKgpNa9BEQ82LuWbSzC0rclaVOeEVtWVeFBWzNQMAPq9B0pyJQtREAp-im6Nust0NJvZq44eQ_omKMcIkTyVP1O2R0sHHGIxVXXBbCKOiRO0jVClCtY8wodkR_XGNGf_l1NvL8sD_AhgGcw0</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Yang, Kaijun</creator><creator>Zheng, Jun</creator><creator>Zhu, Guchuan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2117-6796</orcidid></search><sort><creationdate>20190525</creationdate><title>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</title><author>Yang, Kaijun ; Zheng, Jun ; Zhu, Guchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Actuation</topic><topic>Adomian decomposition method</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Convergence</topic><topic>Cybernetics</topic><topic>differential flatness</topic><topic>Dynamic control</topic><topic>Inverse design</topic><topic>Mathematical analysis</topic><topic>semilinear parabolic equations</topic><topic>Stability analysis</topic><topic>Tracking</topic><topic>Trajectory planning</topic><topic>zero dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Kaijun</creatorcontrib><creatorcontrib>Zheng, Jun</creatorcontrib><creatorcontrib>Zhu, Guchuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Kaijun</au><au>Zheng, Jun</au><au>Zhu, Guchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2019-05-25</date><risdate>2019</risdate><volume>29</volume><issue>8</issue><spage>2471</spage><epage>2493</epage><pages>2471-2493</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper addresses the problem of asymptotic output tracking of a class of semilinear parabolic equations with pointwise in‐domain actuation. First, the assessment of the well‐posedness of the considered systems is performed, and then, the stability of boundary controlled systems is analyzed via Chaffee‐Infante equation and Fisher's equation. The application of the zero dynamics inverse design results in a dynamic control scheme that is implemented by using the technique of trajectory planning for flat systems and the Adomian decomposition method. The convergence of the solution of the original systems to that of the corresponding zero dynamics and the convergence of the solution expressed by an Adomian series are also analyzed. Numerical simulations are carried out to illustrate the effectiveness of the developed approach.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.4504</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2117-6796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2019-05, Vol.29 (8), p.2471-2493
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2202932025
source Wiley
subjects Actuation
Adomian decomposition method
Asymptotic properties
Computer simulation
Control stability
Convergence
Cybernetics
differential flatness
Dynamic control
Inverse design
Mathematical analysis
semilinear parabolic equations
Stability analysis
Tracking
Trajectory planning
zero dynamics
title Asymptotic output tracking for a class of semilinear parabolic equations: A semianalytical approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20output%20tracking%20for%20a%20class%20of%20semilinear%20parabolic%20equations:%20A%20semianalytical%20approach&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Yang,%20Kaijun&rft.date=2019-05-25&rft.volume=29&rft.issue=8&rft.spage=2471&rft.epage=2493&rft.pages=2471-2493&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.4504&rft_dat=%3Cproquest_cross%3E2202932025%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3304-428e147c1dac0cad376c29e6f2752b8503b1f8577b2fd2aaa36da9152474d09a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202932025&rft_id=info:pmid/&rfr_iscdi=true