Loading…
Global solutions to three-dimensional generalized MHD equations with large initial data
We investigate the initial value problem for the three-dimensional generalized incompressible MHD equations. Firstly, global stability result is established by energy method in the Fourier space. Then for a class of large initial data, global solutions are obtained in the critical function space X 1...
Saved in:
Published in: | Zeitschrift für angewandte Mathematik und Physik 2019-06, Vol.70 (3), p.1-12, Article 69 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333 |
container_end_page | 12 |
container_issue | 3 |
container_start_page | 1 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 70 |
creator | Liu, Fagui Wang, Yu-Zhu |
description | We investigate the initial value problem for the three-dimensional generalized incompressible MHD equations. Firstly, global stability result is established by energy method in the Fourier space. Then for a class of large initial data, global solutions are obtained in the critical function space
X
1
-
2
α
by global stability result. |
doi_str_mv | 10.1007/s00033-019-1113-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2203232482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203232482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3BczTJZDfdo1RthYoXxWPIbmbblO1um2QRfXpTVvDkaWDm-3-Gj5Brzm45Y-ouMMYAKOMl5ZwDhRMy4VIwWjIoT8mEMSmpECo_JxchbBOtOIMJ-Vi0fWXaLPTtEF3fhSz2Wdx4RGrdDruQdum8xg69ad032uxl-ZDhYTAj_uniJmuNX2PmOhddgq2J5pKcNaYNePU7p-T96fFtvqSr18Xz_H5Fa-BFpFZhDZgXZSkV5MJKgNoWqiqEkJbVVVGqpqpzoYScyabMMZfcKCjUrKktAsCU3Iy9e98fBgxRb_vBp5eDFoKBgBQUieIjVfs-BI-N3nu3M_5Lc6aP_vToTyd_-uhPH5vFmAmJ7dbo_5r_D_0ATPVyVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203232482</pqid></control><display><type>article</type><title>Global solutions to three-dimensional generalized MHD equations with large initial data</title><source>Springer Link</source><creator>Liu, Fagui ; Wang, Yu-Zhu</creator><creatorcontrib>Liu, Fagui ; Wang, Yu-Zhu</creatorcontrib><description>We investigate the initial value problem for the three-dimensional generalized incompressible MHD equations. Firstly, global stability result is established by energy method in the Fourier space. Then for a class of large initial data, global solutions are obtained in the critical function space
X
1
-
2
α
by global stability result.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-019-1113-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Dimensional stability ; Engineering ; Function space ; Mathematical analysis ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2019-06, Vol.70 (3), p.1-12, Article 69</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333</citedby><cites>FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333</cites><orcidid>0000-0003-3295-344X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Fagui</creatorcontrib><creatorcontrib>Wang, Yu-Zhu</creatorcontrib><title>Global solutions to three-dimensional generalized MHD equations with large initial data</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>We investigate the initial value problem for the three-dimensional generalized incompressible MHD equations. Firstly, global stability result is established by energy method in the Fourier space. Then for a class of large initial data, global solutions are obtained in the critical function space
X
1
-
2
α
by global stability result.</description><subject>Boundary value problems</subject><subject>Dimensional stability</subject><subject>Engineering</subject><subject>Function space</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4G3BczTJZDfdo1RthYoXxWPIbmbblO1um2QRfXpTVvDkaWDm-3-Gj5Brzm45Y-ouMMYAKOMl5ZwDhRMy4VIwWjIoT8mEMSmpECo_JxchbBOtOIMJ-Vi0fWXaLPTtEF3fhSz2Wdx4RGrdDruQdum8xg69ad032uxl-ZDhYTAj_uniJmuNX2PmOhddgq2J5pKcNaYNePU7p-T96fFtvqSr18Xz_H5Fa-BFpFZhDZgXZSkV5MJKgNoWqiqEkJbVVVGqpqpzoYScyabMMZfcKCjUrKktAsCU3Iy9e98fBgxRb_vBp5eDFoKBgBQUieIjVfs-BI-N3nu3M_5Lc6aP_vToTyd_-uhPH5vFmAmJ7dbo_5r_D_0ATPVyVQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Liu, Fagui</creator><creator>Wang, Yu-Zhu</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3295-344X</orcidid></search><sort><creationdate>20190601</creationdate><title>Global solutions to three-dimensional generalized MHD equations with large initial data</title><author>Liu, Fagui ; Wang, Yu-Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Dimensional stability</topic><topic>Engineering</topic><topic>Function space</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Fagui</creatorcontrib><creatorcontrib>Wang, Yu-Zhu</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Fagui</au><au>Wang, Yu-Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global solutions to three-dimensional generalized MHD equations with large initial data</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>70</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>69</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We investigate the initial value problem for the three-dimensional generalized incompressible MHD equations. Firstly, global stability result is established by energy method in the Fourier space. Then for a class of large initial data, global solutions are obtained in the critical function space
X
1
-
2
α
by global stability result.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-019-1113-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3295-344X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2019-06, Vol.70 (3), p.1-12, Article 69 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2203232482 |
source | Springer Link |
subjects | Boundary value problems Dimensional stability Engineering Function space Mathematical analysis Mathematical Methods in Physics Theoretical and Applied Mechanics |
title | Global solutions to three-dimensional generalized MHD equations with large initial data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20solutions%20to%20three-dimensional%20generalized%20MHD%20equations%20with%20large%20initial%20data&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Liu,%20Fagui&rft.date=2019-06-01&rft.volume=70&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=69&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-019-1113-3&rft_dat=%3Cproquest_cross%3E2203232482%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-d7ec3e569947352d433cd67b6224d0cb697fbc5272484f95e541a73678fcde333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203232482&rft_id=info:pmid/&rfr_iscdi=true |