Loading…

Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing

Based on the inherent stochasticity of CMOS-integrated HfO 2 -based resistive random access memory (RRAM) devices, a new learning algorithm for neuro-morphic systems is presented. For this purpose, the device-to-device variability of CMOS-integrated 4-kbit 1T-1R arrays is examined. To demonstrate th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE electron device letters 2019-04, Vol.40 (4), p.639-642
Main Authors: Wenger, C., Zahari, F., Mahadevaiah, M. K., Perez, E., Beckers, I., Kohlstedt, H., Ziegler, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c250t-71887702749b1bfb8dc1f92a8c0addbb7bc24e38ae750a50a1bbd02f92e81aff3
cites
container_end_page 642
container_issue 4
container_start_page 639
container_title IEEE electron device letters
container_volume 40
creator Wenger, C.
Zahari, F.
Mahadevaiah, M. K.
Perez, E.
Beckers, I.
Kohlstedt, H.
Ziegler, M.
description Based on the inherent stochasticity of CMOS-integrated HfO 2 -based resistive random access memory (RRAM) devices, a new learning algorithm for neuro-morphic systems is presented. For this purpose, the device-to-device variability of CMOS-integrated 4-kbit 1T-1R arrays is examined. To demonstrate the performance of the stochastic learning algorithm and the potential of RRAM technologies for neuro-morphic systems, a two-layer mixed-signal neural circuit for pattern recognition is implemented and tested with MNIST data.
doi_str_mv 10.1109/LED.2019.2900867
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2203404378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8649746</ieee_id><sourcerecordid>2203404378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-71887702749b1bfb8dc1f92a8c0addbb7bc24e38ae750a50a1bbd02f92e81aff3</originalsourceid><addsrcrecordid>eNotjc9LwzAYhoMoOKd3wUvAc-eXH23S46jTDao7TL2WpP2ydbi0pulh_70FhRfey_O8LyH3DBaMQf5Urp4XHFi-4DmAztQFmbE01QmkmbgkM1CSJYJBdk1uhuEIwKRUcka-Nv6AAX2ku9jVBzPEtqYlmuBbv6etp8XbdpdsfMR9MBEbunZbTpchmPNAXRfoO46hO3WhP0xi0Z36MU7mLbly5nvAu_-ek8-X1UexTsrt66ZYlknNU4iJYlorBVzJ3DLrrG5q5nJudA2maaxVtuYShTaoUjBTmLUN8AlBzYxzYk4e_3b70P2MOMTq2I3BT5cV5yAkSKH0RD38US0iVn1oTyacK53JXMlM_ALo-1xO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203404378</pqid></control><display><type>article</type><title>Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wenger, C. ; Zahari, F. ; Mahadevaiah, M. K. ; Perez, E. ; Beckers, I. ; Kohlstedt, H. ; Ziegler, M.</creator><creatorcontrib>Wenger, C. ; Zahari, F. ; Mahadevaiah, M. K. ; Perez, E. ; Beckers, I. ; Kohlstedt, H. ; Ziegler, M.</creatorcontrib><description>Based on the inherent stochasticity of CMOS-integrated HfO 2 -based resistive random access memory (RRAM) devices, a new learning algorithm for neuro-morphic systems is presented. For this purpose, the device-to-device variability of CMOS-integrated 4-kbit 1T-1R arrays is examined. To demonstrate the performance of the stochastic learning algorithm and the potential of RRAM technologies for neuro-morphic systems, a two-layer mixed-signal neural circuit for pattern recognition is implemented and tested with MNIST data.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2019.2900867</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; CMOS ; Gaussian distribution ; Hafnium compounds ; Hafnium oxide ; HfO ; Machine learning ; Memory devices ; neuro-morphic computing ; Neuromorphics ; Neurons ; Object recognition ; Pattern recognition ; Performance evaluation ; Random access memory ; RRAM ; Switches</subject><ispartof>IEEE electron device letters, 2019-04, Vol.40 (4), p.639-642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-71887702749b1bfb8dc1f92a8c0addbb7bc24e38ae750a50a1bbd02f92e81aff3</citedby><orcidid>0000-0002-6534-9954 ; 0000-0002-6891-5747 ; 0000-0001-7545-9420 ; 0000-0003-3698-2635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8649746$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wenger, C.</creatorcontrib><creatorcontrib>Zahari, F.</creatorcontrib><creatorcontrib>Mahadevaiah, M. K.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Beckers, I.</creatorcontrib><creatorcontrib>Kohlstedt, H.</creatorcontrib><creatorcontrib>Ziegler, M.</creatorcontrib><title>Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>Based on the inherent stochasticity of CMOS-integrated HfO 2 -based resistive random access memory (RRAM) devices, a new learning algorithm for neuro-morphic systems is presented. For this purpose, the device-to-device variability of CMOS-integrated 4-kbit 1T-1R arrays is examined. To demonstrate the performance of the stochastic learning algorithm and the potential of RRAM technologies for neuro-morphic systems, a two-layer mixed-signal neural circuit for pattern recognition is implemented and tested with MNIST data.</description><subject>Algorithms</subject><subject>CMOS</subject><subject>Gaussian distribution</subject><subject>Hafnium compounds</subject><subject>Hafnium oxide</subject><subject>HfO</subject><subject>Machine learning</subject><subject>Memory devices</subject><subject>neuro-morphic computing</subject><subject>Neuromorphics</subject><subject>Neurons</subject><subject>Object recognition</subject><subject>Pattern recognition</subject><subject>Performance evaluation</subject><subject>Random access memory</subject><subject>RRAM</subject><subject>Switches</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotjc9LwzAYhoMoOKd3wUvAc-eXH23S46jTDao7TL2WpP2ydbi0pulh_70FhRfey_O8LyH3DBaMQf5Urp4XHFi-4DmAztQFmbE01QmkmbgkM1CSJYJBdk1uhuEIwKRUcka-Nv6AAX2ku9jVBzPEtqYlmuBbv6etp8XbdpdsfMR9MBEbunZbTpchmPNAXRfoO46hO3WhP0xi0Z36MU7mLbly5nvAu_-ek8-X1UexTsrt66ZYlknNU4iJYlorBVzJ3DLrrG5q5nJudA2maaxVtuYShTaoUjBTmLUN8AlBzYxzYk4e_3b70P2MOMTq2I3BT5cV5yAkSKH0RD38US0iVn1oTyacK53JXMlM_ALo-1xO</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Wenger, C.</creator><creator>Zahari, F.</creator><creator>Mahadevaiah, M. K.</creator><creator>Perez, E.</creator><creator>Beckers, I.</creator><creator>Kohlstedt, H.</creator><creator>Ziegler, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6534-9954</orcidid><orcidid>https://orcid.org/0000-0002-6891-5747</orcidid><orcidid>https://orcid.org/0000-0001-7545-9420</orcidid><orcidid>https://orcid.org/0000-0003-3698-2635</orcidid></search><sort><creationdate>20190401</creationdate><title>Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing</title><author>Wenger, C. ; Zahari, F. ; Mahadevaiah, M. K. ; Perez, E. ; Beckers, I. ; Kohlstedt, H. ; Ziegler, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-71887702749b1bfb8dc1f92a8c0addbb7bc24e38ae750a50a1bbd02f92e81aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>CMOS</topic><topic>Gaussian distribution</topic><topic>Hafnium compounds</topic><topic>Hafnium oxide</topic><topic>HfO</topic><topic>Machine learning</topic><topic>Memory devices</topic><topic>neuro-morphic computing</topic><topic>Neuromorphics</topic><topic>Neurons</topic><topic>Object recognition</topic><topic>Pattern recognition</topic><topic>Performance evaluation</topic><topic>Random access memory</topic><topic>RRAM</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenger, C.</creatorcontrib><creatorcontrib>Zahari, F.</creatorcontrib><creatorcontrib>Mahadevaiah, M. K.</creatorcontrib><creatorcontrib>Perez, E.</creatorcontrib><creatorcontrib>Beckers, I.</creatorcontrib><creatorcontrib>Kohlstedt, H.</creatorcontrib><creatorcontrib>Ziegler, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenger, C.</au><au>Zahari, F.</au><au>Mahadevaiah, M. K.</au><au>Perez, E.</au><au>Beckers, I.</au><au>Kohlstedt, H.</au><au>Ziegler, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>639</spage><epage>642</epage><pages>639-642</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>Based on the inherent stochasticity of CMOS-integrated HfO 2 -based resistive random access memory (RRAM) devices, a new learning algorithm for neuro-morphic systems is presented. For this purpose, the device-to-device variability of CMOS-integrated 4-kbit 1T-1R arrays is examined. To demonstrate the performance of the stochastic learning algorithm and the potential of RRAM technologies for neuro-morphic systems, a two-layer mixed-signal neural circuit for pattern recognition is implemented and tested with MNIST data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2019.2900867</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6534-9954</orcidid><orcidid>https://orcid.org/0000-0002-6891-5747</orcidid><orcidid>https://orcid.org/0000-0001-7545-9420</orcidid><orcidid>https://orcid.org/0000-0003-3698-2635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2019-04, Vol.40 (4), p.639-642
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_2203404378
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
CMOS
Gaussian distribution
Hafnium compounds
Hafnium oxide
HfO
Machine learning
Memory devices
neuro-morphic computing
Neuromorphics
Neurons
Object recognition
Pattern recognition
Performance evaluation
Random access memory
RRAM
Switches
title Inherent Stochastic Learning in CMOS-Integrated HfO2 Arrays for Neuromorphic Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inherent%20Stochastic%20Learning%20in%20CMOS-Integrated%20HfO2%20Arrays%20for%20Neuromorphic%20Computing&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Wenger,%20C.&rft.date=2019-04-01&rft.volume=40&rft.issue=4&rft.spage=639&rft.epage=642&rft.pages=639-642&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2019.2900867&rft_dat=%3Cproquest_ieee_%3E2203404378%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c250t-71887702749b1bfb8dc1f92a8c0addbb7bc24e38ae750a50a1bbd02f92e81aff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203404378&rft_id=info:pmid/&rft_ieee_id=8649746&rfr_iscdi=true