Loading…

A scalable Controlled NOT gate for linear optical computing using microring resonators

We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expa...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-04
Main Authors: Scott, Ryan E, Alsing, Paul M, Smith, A Matthew, Fanto, Michael L, Tison, Christopher C, Schneeloch, James, Hach, Edwin E, III
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Scott, Ryan E
Alsing, Paul M
Smith, A Matthew
Fanto, Michael L
Tison, Christopher C
Schneeloch, James
Hach, Edwin E
III
description We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.
doi_str_mv 10.48550/arxiv.1904.02268
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2203507425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203507425</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563</originalsourceid><addsrcrecordid>eNotjctqwzAUREWh0JDmA7oTdO306uphexlMXxCajek2XMtycHAsV5JLP78O7WZmGIYzjD0I2KpCa3ii8NN_b0UJaguIprhhK5RSZIVCvGObGM8AgCZHreWKfe54tDRQMzhe-TEFPwyu5R-Hmp8oOd75wId-dBS4n1K_TLn1l2lO_Xjic7zqpbfBh2sKLvqRkg_xnt12NES3-fc1q1-e6-ot2x9e36vdPiONOpOikaqT1DojVEctoLQNGSM1QOFsaciIpjQdYJvrXGmrHFm0tNSidNrINXv8w07Bf80upuPZz2FcHo-IsGByhVr-AlBJUwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203507425</pqid></control><display><type>article</type><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><source>Publicly Available Content (ProQuest)</source><creator>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</creator><creatorcontrib>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</creatorcontrib><description>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.02268</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beam splitters ; Parameters ; Resonators</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2203507425?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Scott, Ryan E</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Smith, A Matthew</creatorcontrib><creatorcontrib>Fanto, Michael L</creatorcontrib><creatorcontrib>Tison, Christopher C</creatorcontrib><creatorcontrib>Schneeloch, James</creatorcontrib><creatorcontrib>Hach, Edwin E</creatorcontrib><creatorcontrib>III</creatorcontrib><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><title>arXiv.org</title><description>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</description><subject>Beam splitters</subject><subject>Parameters</subject><subject>Resonators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAUREWh0JDmA7oTdO306uphexlMXxCajek2XMtycHAsV5JLP78O7WZmGIYzjD0I2KpCa3ii8NN_b0UJaguIprhhK5RSZIVCvGObGM8AgCZHreWKfe54tDRQMzhe-TEFPwyu5R-Hmp8oOd75wId-dBS4n1K_TLn1l2lO_Xjic7zqpbfBh2sKLvqRkg_xnt12NES3-fc1q1-e6-ot2x9e36vdPiONOpOikaqT1DojVEctoLQNGSM1QOFsaciIpjQdYJvrXGmrHFm0tNSidNrINXv8w07Bf80upuPZz2FcHo-IsGByhVr-AlBJUwE</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Scott, Ryan E</creator><creator>Alsing, Paul M</creator><creator>Smith, A Matthew</creator><creator>Fanto, Michael L</creator><creator>Tison, Christopher C</creator><creator>Schneeloch, James</creator><creator>Hach, Edwin E</creator><creator>III</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190403</creationdate><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><author>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beam splitters</topic><topic>Parameters</topic><topic>Resonators</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott, Ryan E</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Smith, A Matthew</creatorcontrib><creatorcontrib>Fanto, Michael L</creatorcontrib><creatorcontrib>Tison, Christopher C</creatorcontrib><creatorcontrib>Schneeloch, James</creatorcontrib><creatorcontrib>Hach, Edwin E</creatorcontrib><creatorcontrib>III</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Ryan E</au><au>Alsing, Paul M</au><au>Smith, A Matthew</au><au>Fanto, Michael L</au><au>Tison, Christopher C</au><au>Schneeloch, James</au><au>Hach, Edwin E</au><au>III</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable Controlled NOT gate for linear optical computing using microring resonators</atitle><jtitle>arXiv.org</jtitle><date>2019-04-03</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.02268</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2203507425
source Publicly Available Content (ProQuest)
subjects Beam splitters
Parameters
Resonators
title A scalable Controlled NOT gate for linear optical computing using microring resonators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable%20Controlled%20NOT%20gate%20for%20linear%20optical%20computing%20using%20microring%20resonators&rft.jtitle=arXiv.org&rft.au=Scott,%20Ryan%20E&rft.date=2019-04-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.02268&rft_dat=%3Cproquest%3E2203507425%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203507425&rft_id=info:pmid/&rfr_iscdi=true