Loading…
A scalable Controlled NOT gate for linear optical computing using microring resonators
We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expa...
Saved in:
Published in: | arXiv.org 2019-04 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Scott, Ryan E Alsing, Paul M Smith, A Matthew Fanto, Michael L Tison, Christopher C Schneeloch, James Hach, Edwin E III |
description | We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss. |
doi_str_mv | 10.48550/arxiv.1904.02268 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2203507425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2203507425</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563</originalsourceid><addsrcrecordid>eNotjctqwzAUREWh0JDmA7oTdO306uphexlMXxCajek2XMtycHAsV5JLP78O7WZmGIYzjD0I2KpCa3ii8NN_b0UJaguIprhhK5RSZIVCvGObGM8AgCZHreWKfe54tDRQMzhe-TEFPwyu5R-Hmp8oOd75wId-dBS4n1K_TLn1l2lO_Xjic7zqpbfBh2sKLvqRkg_xnt12NES3-fc1q1-e6-ot2x9e36vdPiONOpOikaqT1DojVEctoLQNGSM1QOFsaciIpjQdYJvrXGmrHFm0tNSidNrINXv8w07Bf80upuPZz2FcHo-IsGByhVr-AlBJUwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2203507425</pqid></control><display><type>article</type><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><source>Publicly Available Content (ProQuest)</source><creator>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</creator><creatorcontrib>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</creatorcontrib><description>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.02268</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beam splitters ; Parameters ; Resonators</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2203507425?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Scott, Ryan E</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Smith, A Matthew</creatorcontrib><creatorcontrib>Fanto, Michael L</creatorcontrib><creatorcontrib>Tison, Christopher C</creatorcontrib><creatorcontrib>Schneeloch, James</creatorcontrib><creatorcontrib>Hach, Edwin E</creatorcontrib><creatorcontrib>III</creatorcontrib><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><title>arXiv.org</title><description>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</description><subject>Beam splitters</subject><subject>Parameters</subject><subject>Resonators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctqwzAUREWh0JDmA7oTdO306uphexlMXxCajek2XMtycHAsV5JLP78O7WZmGIYzjD0I2KpCa3ii8NN_b0UJaguIprhhK5RSZIVCvGObGM8AgCZHreWKfe54tDRQMzhe-TEFPwyu5R-Hmp8oOd75wId-dBS4n1K_TLn1l2lO_Xjic7zqpbfBh2sKLvqRkg_xnt12NES3-fc1q1-e6-ot2x9e36vdPiONOpOikaqT1DojVEctoLQNGSM1QOFsaciIpjQdYJvrXGmrHFm0tNSidNrINXv8w07Bf80upuPZz2FcHo-IsGByhVr-AlBJUwE</recordid><startdate>20190403</startdate><enddate>20190403</enddate><creator>Scott, Ryan E</creator><creator>Alsing, Paul M</creator><creator>Smith, A Matthew</creator><creator>Fanto, Michael L</creator><creator>Tison, Christopher C</creator><creator>Schneeloch, James</creator><creator>Hach, Edwin E</creator><creator>III</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190403</creationdate><title>A scalable Controlled NOT gate for linear optical computing using microring resonators</title><author>Scott, Ryan E ; Alsing, Paul M ; Smith, A Matthew ; Fanto, Michael L ; Tison, Christopher C ; Schneeloch, James ; Hach, Edwin E ; III</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beam splitters</topic><topic>Parameters</topic><topic>Resonators</topic><toplevel>online_resources</toplevel><creatorcontrib>Scott, Ryan E</creatorcontrib><creatorcontrib>Alsing, Paul M</creatorcontrib><creatorcontrib>Smith, A Matthew</creatorcontrib><creatorcontrib>Fanto, Michael L</creatorcontrib><creatorcontrib>Tison, Christopher C</creatorcontrib><creatorcontrib>Schneeloch, James</creatorcontrib><creatorcontrib>Hach, Edwin E</creatorcontrib><creatorcontrib>III</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Ryan E</au><au>Alsing, Paul M</au><au>Smith, A Matthew</au><au>Fanto, Michael L</au><au>Tison, Christopher C</au><au>Schneeloch, James</au><au>Hach, Edwin E</au><au>III</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable Controlled NOT gate for linear optical computing using microring resonators</atitle><jtitle>arXiv.org</jtitle><date>2019-04-03</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We propose a scalable version of a KLM CNOT gate based upon integrated waveguide microring resonators (MRR), vs the original KLM-approach using beam splitters (BS). The core element of our CNOT gate is a nonlinear phase-shift gate (NLPSG) using three MRRs, which we examine in detail. We find an expanded parameter space for the NLPSG over that of the conventional version. Whereas in all prior proposals for bulk optical realizations of the NLPSG the optimal operating point is precisely a single zero dimensional manifold within the parameter space of the device, we find conditions for effective transmission amplitudes which define a set of one dimensional manifolds in the parameters spaces of the MRRs. This allows for an unprecedented level flexibility in operation of the NLPSG that and allows for the fabrication of tunable MRR-based devices with high precision and low loss.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.02268</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2203507425 |
source | Publicly Available Content (ProQuest) |
subjects | Beam splitters Parameters Resonators |
title | A scalable Controlled NOT gate for linear optical computing using microring resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable%20Controlled%20NOT%20gate%20for%20linear%20optical%20computing%20using%20microring%20resonators&rft.jtitle=arXiv.org&rft.au=Scott,%20Ryan%20E&rft.date=2019-04-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.02268&rft_dat=%3Cproquest%3E2203507425%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-31b34f3ade614fad023cba6635008ec96a61b96f02d75745c4eac2caa6119e563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2203507425&rft_id=info:pmid/&rfr_iscdi=true |