Loading…
Some remarks on the solution of linearisable second-order ordinary differential equations via point transformations
Transformations of differential equations to other equivalent equations play a central role in many routines for solving intricate equations. A class of differential equations that are particularly amenable to solution techniques based on such transformations is the class of linearisable second-orde...
Saved in:
Published in: | arXiv.org 2020-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transformations of differential equations to other equivalent equations play a central role in many routines for solving intricate equations. A class of differential equations that are particularly amenable to solution techniques based on such transformations is the class of linearisable second-order ordinary differential equations (ODEs). There are various characterisations of such ODEs. We exploit a particular characterisation and the expanded Lie group method to construct a generic solution for all linearisable second-order ODEs. The general solution of any given equation from this class is then easily obtainable from the generic solution through a point transformation constructed using only two suitably chosen symmetries of the equation. We illustrate the approach with three examples. |
---|---|
ISSN: | 2331-8422 |