Loading…

Orbital relaxation and excitation of planets tidally interacting with white dwarfs

Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and can themselves be perturbed close to the white dw...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-04
Main Authors: Veras, Dimitri, Efroimsky, Michael, Makarov, Valeri V, Boué, Gwenaël, Wolthoff, Vera, Reffert, Sabine, Quirrenbach, Andreas, Pier-Emmanuel Tremblay, Gänsicke, Boris T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Veras, Dimitri
Efroimsky, Michael
Makarov, Valeri V
Boué, Gwenaël
Wolthoff, Vera
Reffert, Sabine
Quirrenbach, Andreas
Pier-Emmanuel Tremblay
Gänsicke, Boris T
description Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and can themselves be perturbed close to the white dwarf Roche radius. Here, we illustrate a procedure for computing the tidal interaction between a white dwarf and a near-spherical solid planet. This method determines the planet's inward and/or outward drift, and whether the planet will reach the Roche radius and be destroyed. We avoid constant tidal lag formulations and instead employ the self-consistent secular Darwin-Kaula expansions from Bou\'{e} & Efroimsky (2019), which feature an arbitrary frequency dependence on the quality functions. We adopt wide ranges of dynamic viscosities and spin rates for the planet in order to straddle many possible outcomes, and provide a foundation for the future study of individual systems with known or assumed rheologies. We find that: (i) massive Super-Earths are destroyed more readily than minor planets (such as the ones orbiting WD 1145+017 and SDSS J1228+1040), (ii) low-viscosity planets are destroyed more easily than high-viscosity planets, and (iii) the boundary between survival and destruction is likely to be fractal and chaotic.
doi_str_mv 10.48550/arxiv.1904.03195
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2205756832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2205756832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-8cecf80d4431ec034b515cdf5b1852da716566800ca8b9d36100b13d4f1b3e5c3</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdBsNT-AHcDrhPvPG4yWUrxBYWCdF_uPGKnhKROpib-e4u6-jhncT7G7gSU2iDCA6U5fpWiAV2CEg1esYVUShRGS3nDVuN4BABZ1RJRLdj7NtmYqeMpdDRTjkPPqfc8zO6if3Fo-amjPuSR5-ip67557HNI5HLsP_gU84FPh5gD9xOldrxl1y11Y1j975Ltnp9269dis315Wz9uCkIpC-OCaw14rZUIDpS2KND5Fq0wKD3VosKqMgCOjG28qgSAFcrrVlgV0Kklu__LntLweQ5j3h-Hc-ovj3spAWusjJLqB1-xUfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2205756832</pqid></control><display><type>article</type><title>Orbital relaxation and excitation of planets tidally interacting with white dwarfs</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Veras, Dimitri ; Efroimsky, Michael ; Makarov, Valeri V ; Boué, Gwenaël ; Wolthoff, Vera ; Reffert, Sabine ; Quirrenbach, Andreas ; Pier-Emmanuel Tremblay ; Gänsicke, Boris T</creator><creatorcontrib>Veras, Dimitri ; Efroimsky, Michael ; Makarov, Valeri V ; Boué, Gwenaël ; Wolthoff, Vera ; Reffert, Sabine ; Quirrenbach, Andreas ; Pier-Emmanuel Tremblay ; Gänsicke, Boris T</creatorcontrib><description>Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and can themselves be perturbed close to the white dwarf Roche radius. Here, we illustrate a procedure for computing the tidal interaction between a white dwarf and a near-spherical solid planet. This method determines the planet's inward and/or outward drift, and whether the planet will reach the Roche radius and be destroyed. We avoid constant tidal lag formulations and instead employ the self-consistent secular Darwin-Kaula expansions from Bou\'{e} &amp; Efroimsky (2019), which feature an arbitrary frequency dependence on the quality functions. We adopt wide ranges of dynamic viscosities and spin rates for the planet in order to straddle many possible outcomes, and provide a foundation for the future study of individual systems with known or assumed rheologies. We find that: (i) massive Super-Earths are destroyed more readily than minor planets (such as the ones orbiting WD 1145+017 and SDSS J1228+1040), (ii) low-viscosity planets are destroyed more easily than high-viscosity planets, and (iii) the boundary between survival and destruction is likely to be fractal and chaotic.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1904.03195</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asteroids ; Dependence ; Dwarf planets ; Extrasolar planets ; Formulations ; Planet formation ; Planetary systems ; Rheological properties ; Spin dynamics ; Viscosity ; White dwarf stars</subject><ispartof>arXiv.org, 2019-04</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2205756832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Veras, Dimitri</creatorcontrib><creatorcontrib>Efroimsky, Michael</creatorcontrib><creatorcontrib>Makarov, Valeri V</creatorcontrib><creatorcontrib>Boué, Gwenaël</creatorcontrib><creatorcontrib>Wolthoff, Vera</creatorcontrib><creatorcontrib>Reffert, Sabine</creatorcontrib><creatorcontrib>Quirrenbach, Andreas</creatorcontrib><creatorcontrib>Pier-Emmanuel Tremblay</creatorcontrib><creatorcontrib>Gänsicke, Boris T</creatorcontrib><title>Orbital relaxation and excitation of planets tidally interacting with white dwarfs</title><title>arXiv.org</title><description>Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and can themselves be perturbed close to the white dwarf Roche radius. Here, we illustrate a procedure for computing the tidal interaction between a white dwarf and a near-spherical solid planet. This method determines the planet's inward and/or outward drift, and whether the planet will reach the Roche radius and be destroyed. We avoid constant tidal lag formulations and instead employ the self-consistent secular Darwin-Kaula expansions from Bou\'{e} &amp; Efroimsky (2019), which feature an arbitrary frequency dependence on the quality functions. We adopt wide ranges of dynamic viscosities and spin rates for the planet in order to straddle many possible outcomes, and provide a foundation for the future study of individual systems with known or assumed rheologies. We find that: (i) massive Super-Earths are destroyed more readily than minor planets (such as the ones orbiting WD 1145+017 and SDSS J1228+1040), (ii) low-viscosity planets are destroyed more easily than high-viscosity planets, and (iii) the boundary between survival and destruction is likely to be fractal and chaotic.</description><subject>Asteroids</subject><subject>Dependence</subject><subject>Dwarf planets</subject><subject>Extrasolar planets</subject><subject>Formulations</subject><subject>Planet formation</subject><subject>Planetary systems</subject><subject>Rheological properties</subject><subject>Spin dynamics</subject><subject>Viscosity</subject><subject>White dwarf stars</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AURgdBsNT-AHcDrhPvPG4yWUrxBYWCdF_uPGKnhKROpib-e4u6-jhncT7G7gSU2iDCA6U5fpWiAV2CEg1esYVUShRGS3nDVuN4BABZ1RJRLdj7NtmYqeMpdDRTjkPPqfc8zO6if3Fo-amjPuSR5-ip67557HNI5HLsP_gU84FPh5gD9xOldrxl1y11Y1j975Ltnp9269dis315Wz9uCkIpC-OCaw14rZUIDpS2KND5Fq0wKD3VosKqMgCOjG28qgSAFcrrVlgV0Kklu__LntLweQ5j3h-Hc-ovj3spAWusjJLqB1-xUfY</recordid><startdate>20190405</startdate><enddate>20190405</enddate><creator>Veras, Dimitri</creator><creator>Efroimsky, Michael</creator><creator>Makarov, Valeri V</creator><creator>Boué, Gwenaël</creator><creator>Wolthoff, Vera</creator><creator>Reffert, Sabine</creator><creator>Quirrenbach, Andreas</creator><creator>Pier-Emmanuel Tremblay</creator><creator>Gänsicke, Boris T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190405</creationdate><title>Orbital relaxation and excitation of planets tidally interacting with white dwarfs</title><author>Veras, Dimitri ; Efroimsky, Michael ; Makarov, Valeri V ; Boué, Gwenaël ; Wolthoff, Vera ; Reffert, Sabine ; Quirrenbach, Andreas ; Pier-Emmanuel Tremblay ; Gänsicke, Boris T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-8cecf80d4431ec034b515cdf5b1852da716566800ca8b9d36100b13d4f1b3e5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asteroids</topic><topic>Dependence</topic><topic>Dwarf planets</topic><topic>Extrasolar planets</topic><topic>Formulations</topic><topic>Planet formation</topic><topic>Planetary systems</topic><topic>Rheological properties</topic><topic>Spin dynamics</topic><topic>Viscosity</topic><topic>White dwarf stars</topic><toplevel>online_resources</toplevel><creatorcontrib>Veras, Dimitri</creatorcontrib><creatorcontrib>Efroimsky, Michael</creatorcontrib><creatorcontrib>Makarov, Valeri V</creatorcontrib><creatorcontrib>Boué, Gwenaël</creatorcontrib><creatorcontrib>Wolthoff, Vera</creatorcontrib><creatorcontrib>Reffert, Sabine</creatorcontrib><creatorcontrib>Quirrenbach, Andreas</creatorcontrib><creatorcontrib>Pier-Emmanuel Tremblay</creatorcontrib><creatorcontrib>Gänsicke, Boris T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veras, Dimitri</au><au>Efroimsky, Michael</au><au>Makarov, Valeri V</au><au>Boué, Gwenaël</au><au>Wolthoff, Vera</au><au>Reffert, Sabine</au><au>Quirrenbach, Andreas</au><au>Pier-Emmanuel Tremblay</au><au>Gänsicke, Boris T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orbital relaxation and excitation of planets tidally interacting with white dwarfs</atitle><jtitle>arXiv.org</jtitle><date>2019-04-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Observational evidence of white dwarf planetary systems is dominated by the remains of exo-asteroids through accreted metals, debris discs, and orbiting planetesimals. However, exo-planets in these systems play crucial roles as perturbing agents, and can themselves be perturbed close to the white dwarf Roche radius. Here, we illustrate a procedure for computing the tidal interaction between a white dwarf and a near-spherical solid planet. This method determines the planet's inward and/or outward drift, and whether the planet will reach the Roche radius and be destroyed. We avoid constant tidal lag formulations and instead employ the self-consistent secular Darwin-Kaula expansions from Bou\'{e} &amp; Efroimsky (2019), which feature an arbitrary frequency dependence on the quality functions. We adopt wide ranges of dynamic viscosities and spin rates for the planet in order to straddle many possible outcomes, and provide a foundation for the future study of individual systems with known or assumed rheologies. We find that: (i) massive Super-Earths are destroyed more readily than minor planets (such as the ones orbiting WD 1145+017 and SDSS J1228+1040), (ii) low-viscosity planets are destroyed more easily than high-viscosity planets, and (iii) the boundary between survival and destruction is likely to be fractal and chaotic.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1904.03195</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2205756832
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Asteroids
Dependence
Dwarf planets
Extrasolar planets
Formulations
Planet formation
Planetary systems
Rheological properties
Spin dynamics
Viscosity
White dwarf stars
title Orbital relaxation and excitation of planets tidally interacting with white dwarfs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orbital%20relaxation%20and%20excitation%20of%20planets%20tidally%20interacting%20with%20white%20dwarfs&rft.jtitle=arXiv.org&rft.au=Veras,%20Dimitri&rft.date=2019-04-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1904.03195&rft_dat=%3Cproquest%3E2205756832%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-8cecf80d4431ec034b515cdf5b1852da716566800ca8b9d36100b13d4f1b3e5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2205756832&rft_id=info:pmid/&rfr_iscdi=true