Loading…

Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride

•Porosity, axial-radial thermal conductivity of an adsorbent mixture are obtained.•Particle size, compaction pressure and composition are the experimental factors.•Axial thermal conductivity is 10 times greater than radial one, regardless of factors.•Maximum values for axial and radial thermal condu...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2019-03, Vol.150, p.456-463
Main Authors: Carmona, Mauricio, Pérez, Eduar, Palacio, Mario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3
cites cdi_FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3
container_end_page 463
container_issue
container_start_page 456
container_title Applied thermal engineering
container_volume 150
creator Carmona, Mauricio
Pérez, Eduar
Palacio, Mario
description •Porosity, axial-radial thermal conductivity of an adsorbent mixture are obtained.•Particle size, compaction pressure and composition are the experimental factors.•Axial thermal conductivity is 10 times greater than radial one, regardless of factors.•Maximum values for axial and radial thermal conductivity are 76.5 and 13.8 W/m K. In this study, an adsorbent material made up of a mixture of activated carbon, expanded graphite and lithium chloride, is proposed to evaluate its thermal properties. Ratio effect between mixing components, component particle size, and compaction pressure on porosity and thermal conductivity of composite material was experimentally evaluated. Axial and radial thermal conductivity were evaluated by ASTM C177-13 standard using the hot plate and hot wire method for the respective axial and radial conductivities. Experimental results indicate that the highest porosity reaches 0.78 and is produced with a 70% mixing ratio of activated carbon mass, 10% of LiCl mass, and 20% of expanded graphite mass. With the levels used in experimental design, axial and radial thermal conductivity obtain maximum values of 51.2 W/m K and 11.9 W/m K, respectively. After optimization process based on design of experiments for mixtures, axial and radial conductivity reach their highest values of 76.5 W/m K and 13.8 W/m K, respectively, when mixture is elaborated with a proportion of 30% activated carbon, 40% expanded graphite and 30% Lithium Chloride. This study shows that conductivity results do not vary significantly due to tests temperature.
doi_str_mv 10.1016/j.applthermaleng.2019.01.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206266520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118355261</els_id><sourcerecordid>2206266520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3</originalsourceid><addsrcrecordid>eNqNkcFu3CAURa2olZKm-QekdBk7gDG2pW6qKGkrReqmXaNneM4wsg0FPJr5r3xgmJlsuuuKJzj3XvFuUXxhtGKUyfttBd5PaYNhhgmXl4pT1leUVZSzi-KKdW1dNpLKD3mum74UNWOXxacYt5Qy3rXiqnh93HsMdsYlwURwB9MKybqFuJF4F1y06XBHYG_zKyyGBDDH8T2TaLeYVSe7O2FZAwsBE10YsiGZIWXvEzZ7F9GQ4UBmu09rwBN8VGbGEA1hcMsdwb3PKfniJYDf2ISn0MmmjV1nojeTC9bg5-LjCFPEm_fzuvjz9Pj74Uf5_Ov7z4dvz6UWjKdyHGBscJCdqLmQfd31HUUtunZogDUMsANOzShM3-IIom7HXtYDtoLVbd90WF8Xt2dfH9zfFWNSW7eGJUcqzqnkUjacZurrmdJ5XTHgqHxeKISDYlQde1Jb9W9P6tiTokzlnrL86SzH_JOdxaCitrhoNDagTso4-39Gb3ypqbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206266520</pqid></control><display><type>article</type><title>Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride</title><source>ScienceDirect Freedom Collection</source><creator>Carmona, Mauricio ; Pérez, Eduar ; Palacio, Mario</creator><creatorcontrib>Carmona, Mauricio ; Pérez, Eduar ; Palacio, Mario</creatorcontrib><description>•Porosity, axial-radial thermal conductivity of an adsorbent mixture are obtained.•Particle size, compaction pressure and composition are the experimental factors.•Axial thermal conductivity is 10 times greater than radial one, regardless of factors.•Maximum values for axial and radial thermal conductivity are 76.5 and 13.8 W/m K. In this study, an adsorbent material made up of a mixture of activated carbon, expanded graphite and lithium chloride, is proposed to evaluate its thermal properties. Ratio effect between mixing components, component particle size, and compaction pressure on porosity and thermal conductivity of composite material was experimentally evaluated. Axial and radial thermal conductivity were evaluated by ASTM C177-13 standard using the hot plate and hot wire method for the respective axial and radial conductivities. Experimental results indicate that the highest porosity reaches 0.78 and is produced with a 70% mixing ratio of activated carbon mass, 10% of LiCl mass, and 20% of expanded graphite mass. With the levels used in experimental design, axial and radial thermal conductivity obtain maximum values of 51.2 W/m K and 11.9 W/m K, respectively. After optimization process based on design of experiments for mixtures, axial and radial conductivity reach their highest values of 76.5 W/m K and 13.8 W/m K, respectively, when mixture is elaborated with a proportion of 30% activated carbon, 40% expanded graphite and 30% Lithium Chloride. This study shows that conductivity results do not vary significantly due to tests temperature.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.01.021</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Activated carbon ; Adsorbents ; Composite materials ; Design of experiments ; Design optimization ; Expanded graphite ; Graphite ; Heat conductivity ; Heat transfer ; Hot wire method ; Lithium chloride ; Mixture adsorbent material ; Porosity ; Thermal conductivity ; Thermodynamic properties</subject><ispartof>Applied thermal engineering, 2019-03, Vol.150, p.456-463</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 5, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3</citedby><cites>FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3</cites><orcidid>0000-0003-0460-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Carmona, Mauricio</creatorcontrib><creatorcontrib>Pérez, Eduar</creatorcontrib><creatorcontrib>Palacio, Mario</creatorcontrib><title>Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride</title><title>Applied thermal engineering</title><description>•Porosity, axial-radial thermal conductivity of an adsorbent mixture are obtained.•Particle size, compaction pressure and composition are the experimental factors.•Axial thermal conductivity is 10 times greater than radial one, regardless of factors.•Maximum values for axial and radial thermal conductivity are 76.5 and 13.8 W/m K. In this study, an adsorbent material made up of a mixture of activated carbon, expanded graphite and lithium chloride, is proposed to evaluate its thermal properties. Ratio effect between mixing components, component particle size, and compaction pressure on porosity and thermal conductivity of composite material was experimentally evaluated. Axial and radial thermal conductivity were evaluated by ASTM C177-13 standard using the hot plate and hot wire method for the respective axial and radial conductivities. Experimental results indicate that the highest porosity reaches 0.78 and is produced with a 70% mixing ratio of activated carbon mass, 10% of LiCl mass, and 20% of expanded graphite mass. With the levels used in experimental design, axial and radial thermal conductivity obtain maximum values of 51.2 W/m K and 11.9 W/m K, respectively. After optimization process based on design of experiments for mixtures, axial and radial conductivity reach their highest values of 76.5 W/m K and 13.8 W/m K, respectively, when mixture is elaborated with a proportion of 30% activated carbon, 40% expanded graphite and 30% Lithium Chloride. This study shows that conductivity results do not vary significantly due to tests temperature.</description><subject>Activated carbon</subject><subject>Adsorbents</subject><subject>Composite materials</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Expanded graphite</subject><subject>Graphite</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hot wire method</subject><subject>Lithium chloride</subject><subject>Mixture adsorbent material</subject><subject>Porosity</subject><subject>Thermal conductivity</subject><subject>Thermodynamic properties</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu3CAURa2olZKm-QekdBk7gDG2pW6qKGkrReqmXaNneM4wsg0FPJr5r3xgmJlsuuuKJzj3XvFuUXxhtGKUyfttBd5PaYNhhgmXl4pT1leUVZSzi-KKdW1dNpLKD3mum74UNWOXxacYt5Qy3rXiqnh93HsMdsYlwURwB9MKybqFuJF4F1y06XBHYG_zKyyGBDDH8T2TaLeYVSe7O2FZAwsBE10YsiGZIWXvEzZ7F9GQ4UBmu09rwBN8VGbGEA1hcMsdwb3PKfniJYDf2ISn0MmmjV1nojeTC9bg5-LjCFPEm_fzuvjz9Pj74Uf5_Ov7z4dvz6UWjKdyHGBscJCdqLmQfd31HUUtunZogDUMsANOzShM3-IIom7HXtYDtoLVbd90WF8Xt2dfH9zfFWNSW7eGJUcqzqnkUjacZurrmdJ5XTHgqHxeKISDYlQde1Jb9W9P6tiTokzlnrL86SzH_JOdxaCitrhoNDagTso4-39Gb3ypqbU</recordid><startdate>20190305</startdate><enddate>20190305</enddate><creator>Carmona, Mauricio</creator><creator>Pérez, Eduar</creator><creator>Palacio, Mario</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0460-658X</orcidid></search><sort><creationdate>20190305</creationdate><title>Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride</title><author>Carmona, Mauricio ; Pérez, Eduar ; Palacio, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activated carbon</topic><topic>Adsorbents</topic><topic>Composite materials</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Expanded graphite</topic><topic>Graphite</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hot wire method</topic><topic>Lithium chloride</topic><topic>Mixture adsorbent material</topic><topic>Porosity</topic><topic>Thermal conductivity</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmona, Mauricio</creatorcontrib><creatorcontrib>Pérez, Eduar</creatorcontrib><creatorcontrib>Palacio, Mario</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmona, Mauricio</au><au>Pérez, Eduar</au><au>Palacio, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-03-05</date><risdate>2019</risdate><volume>150</volume><spage>456</spage><epage>463</epage><pages>456-463</pages><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Porosity, axial-radial thermal conductivity of an adsorbent mixture are obtained.•Particle size, compaction pressure and composition are the experimental factors.•Axial thermal conductivity is 10 times greater than radial one, regardless of factors.•Maximum values for axial and radial thermal conductivity are 76.5 and 13.8 W/m K. In this study, an adsorbent material made up of a mixture of activated carbon, expanded graphite and lithium chloride, is proposed to evaluate its thermal properties. Ratio effect between mixing components, component particle size, and compaction pressure on porosity and thermal conductivity of composite material was experimentally evaluated. Axial and radial thermal conductivity were evaluated by ASTM C177-13 standard using the hot plate and hot wire method for the respective axial and radial conductivities. Experimental results indicate that the highest porosity reaches 0.78 and is produced with a 70% mixing ratio of activated carbon mass, 10% of LiCl mass, and 20% of expanded graphite mass. With the levels used in experimental design, axial and radial thermal conductivity obtain maximum values of 51.2 W/m K and 11.9 W/m K, respectively. After optimization process based on design of experiments for mixtures, axial and radial conductivity reach their highest values of 76.5 W/m K and 13.8 W/m K, respectively, when mixture is elaborated with a proportion of 30% activated carbon, 40% expanded graphite and 30% Lithium Chloride. This study shows that conductivity results do not vary significantly due to tests temperature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.01.021</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0460-658X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-03, Vol.150, p.456-463
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2206266520
source ScienceDirect Freedom Collection
subjects Activated carbon
Adsorbents
Composite materials
Design of experiments
Design optimization
Expanded graphite
Graphite
Heat conductivity
Heat transfer
Hot wire method
Lithium chloride
Mixture adsorbent material
Porosity
Thermal conductivity
Thermodynamic properties
title Experimental evaluation of porosity, axial and radial thermal conductivity, of an adsorbent material composed by mixture of activated carbon, expanded graphite and lithium chloride
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A45%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20evaluation%20of%20porosity,%20axial%20and%20radial%20thermal%20conductivity,%20of%20an%20adsorbent%20material%20composed%20by%20mixture%20of%20activated%20carbon,%20expanded%20graphite%20and%20lithium%20chloride&rft.jtitle=Applied%20thermal%20engineering&rft.au=Carmona,%20Mauricio&rft.date=2019-03-05&rft.volume=150&rft.spage=456&rft.epage=463&rft.pages=456-463&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.01.021&rft_dat=%3Cproquest_cross%3E2206266520%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-fbaf5eb6843246938980ec487b5a151ae8a20df4d97efa437f963be74137958e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2206266520&rft_id=info:pmid/&rfr_iscdi=true