Loading…

Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network

As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network...

Full description

Saved in:
Bibliographic Details
Published in:Journal of guidance, control, and dynamics control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048
Main Authors: Nastasi, Kevin M., Black, Jonathan T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3
cites cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3
container_end_page 1048
container_issue 5
container_start_page 1033
container_title Journal of guidance, control, and dynamics
container_volume 42
creator Nastasi, Kevin M.
Black, Jonathan T.
description As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018
doi_str_mv 10.2514/1.G003743
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206445156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159463458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4B9E4oREijd-xDlWBQpSeUgt52jtOpA2NMF2WvXfk6g9c9rZ1bcz0hByDXSUCOD3MJpSylLOTsgABGMxU4qfkgFNGcSCZvScXHi_ohSYhHRAmvESm1BubbWPFg7Nutx8Ra-4se3Wul7PGzTWOCxCtCvDd4TRtKo1Vh3_UPrgSt0Gu7zrlu7B9zYfddNW2B2jeeu2tqwq3Bgbvdmwq936kpwVWHl7dZxD8vn0uJg8x7P36ctkPItNokSIpUpVliqjGBaCU6M1SoqcFVarJYjMKpEIoXspDYBkqc6UVYUEhCTVmg3JzcG3cfVva33IV3XrNl1kniRUci5AyH-pzppLxoXqqNsDZVztvbNF3rjyB90-B5r3teeQH2tnf0ksdKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159463458</pqid></control><display><type>article</type><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><source>Alma/SFX Local Collection</source><creator>Nastasi, Kevin M. ; Black, Jonathan T.</creator><creatorcontrib>Nastasi, Kevin M. ; Black, Jonathan T.</creatorcontrib><description>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G003743</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Adaptive filters ; Algorithms ; Kalman filters ; Markov chains ; Satellite tracking ; Sensors ; Spacecraft tracking ; Surveillance</subject><ispartof>Journal of guidance, control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048</ispartof><rights>Copyright © 2018 by Kevin M. Nastasi. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><rights>Copyright © 2018 by Kevin M. Nastasi. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</citedby><cites>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nastasi, Kevin M.</creatorcontrib><creatorcontrib>Black, Jonathan T.</creatorcontrib><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><title>Journal of guidance, control, and dynamics</title><description>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Kalman filters</subject><subject>Markov chains</subject><subject>Satellite tracking</subject><subject>Sensors</subject><subject>Spacecraft tracking</subject><subject>Surveillance</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4B9E4oREijd-xDlWBQpSeUgt52jtOpA2NMF2WvXfk6g9c9rZ1bcz0hByDXSUCOD3MJpSylLOTsgABGMxU4qfkgFNGcSCZvScXHi_ohSYhHRAmvESm1BubbWPFg7Nutx8Ra-4se3Wul7PGzTWOCxCtCvDd4TRtKo1Vh3_UPrgSt0Gu7zrlu7B9zYfddNW2B2jeeu2tqwq3Bgbvdmwq936kpwVWHl7dZxD8vn0uJg8x7P36ctkPItNokSIpUpVliqjGBaCU6M1SoqcFVarJYjMKpEIoXspDYBkqc6UVYUEhCTVmg3JzcG3cfVva33IV3XrNl1kniRUci5AyH-pzppLxoXqqNsDZVztvbNF3rjyB90-B5r3teeQH2tnf0ksdKI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Nastasi, Kevin M.</creator><creator>Black, Jonathan T.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><author>Nastasi, Kevin M. ; Black, Jonathan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Kalman filters</topic><topic>Markov chains</topic><topic>Satellite tracking</topic><topic>Sensors</topic><topic>Spacecraft tracking</topic><topic>Surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nastasi, Kevin M.</creatorcontrib><creatorcontrib>Black, Jonathan T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nastasi, Kevin M.</au><au>Black, Jonathan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>42</volume><issue>5</issue><spage>1033</spage><epage>1048</epage><pages>1033-1048</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G003743</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048
issn 0731-5090
1533-3884
language eng
recordid cdi_proquest_journals_2206445156
source Alma/SFX Local Collection
subjects Adaptive filters
Algorithms
Kalman filters
Markov chains
Satellite tracking
Sensors
Spacecraft tracking
Surveillance
title Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20Tracking%20Maneuvering%20Spacecraft%20with%20a%20Globally%20Distributed,%20Diversely%20Populated%20Surveillance%20Network&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Nastasi,%20Kevin%20M.&rft.date=2019-05-01&rft.volume=42&rft.issue=5&rft.spage=1033&rft.epage=1048&rft.pages=1033-1048&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G003743&rft_dat=%3Cproquest_cross%3E2159463458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159463458&rft_id=info:pmid/&rfr_iscdi=true