Loading…
Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network
As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network...
Saved in:
Published in: | Journal of guidance, control, and dynamics control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3 |
container_end_page | 1048 |
container_issue | 5 |
container_start_page | 1033 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 42 |
creator | Nastasi, Kevin M. Black, Jonathan T. |
description | As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018 |
doi_str_mv | 10.2514/1.G003743 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2206445156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2159463458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4B9E4oREijd-xDlWBQpSeUgt52jtOpA2NMF2WvXfk6g9c9rZ1bcz0hByDXSUCOD3MJpSylLOTsgABGMxU4qfkgFNGcSCZvScXHi_ohSYhHRAmvESm1BubbWPFg7Nutx8Ra-4se3Wul7PGzTWOCxCtCvDd4TRtKo1Vh3_UPrgSt0Gu7zrlu7B9zYfddNW2B2jeeu2tqwq3Bgbvdmwq936kpwVWHl7dZxD8vn0uJg8x7P36ctkPItNokSIpUpVliqjGBaCU6M1SoqcFVarJYjMKpEIoXspDYBkqc6UVYUEhCTVmg3JzcG3cfVva33IV3XrNl1kniRUci5AyH-pzppLxoXqqNsDZVztvbNF3rjyB90-B5r3teeQH2tnf0ksdKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159463458</pqid></control><display><type>article</type><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><source>Alma/SFX Local Collection</source><creator>Nastasi, Kevin M. ; Black, Jonathan T.</creator><creatorcontrib>Nastasi, Kevin M. ; Black, Jonathan T.</creatorcontrib><description>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G003743</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Adaptive filters ; Algorithms ; Kalman filters ; Markov chains ; Satellite tracking ; Sensors ; Spacecraft tracking ; Surveillance</subject><ispartof>Journal of guidance, control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048</ispartof><rights>Copyright © 2018 by Kevin M. Nastasi. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><rights>Copyright © 2018 by Kevin M. Nastasi. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</citedby><cites>FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nastasi, Kevin M.</creatorcontrib><creatorcontrib>Black, Jonathan T.</creatorcontrib><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><title>Journal of guidance, control, and dynamics</title><description>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</description><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Kalman filters</subject><subject>Markov chains</subject><subject>Satellite tracking</subject><subject>Sensors</subject><subject>Spacecraft tracking</subject><subject>Surveillance</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4B9E4oREijd-xDlWBQpSeUgt52jtOpA2NMF2WvXfk6g9c9rZ1bcz0hByDXSUCOD3MJpSylLOTsgABGMxU4qfkgFNGcSCZvScXHi_ohSYhHRAmvESm1BubbWPFg7Nutx8Ra-4se3Wul7PGzTWOCxCtCvDd4TRtKo1Vh3_UPrgSt0Gu7zrlu7B9zYfddNW2B2jeeu2tqwq3Bgbvdmwq936kpwVWHl7dZxD8vn0uJg8x7P36ctkPItNokSIpUpVliqjGBaCU6M1SoqcFVarJYjMKpEIoXspDYBkqc6UVYUEhCTVmg3JzcG3cfVva33IV3XrNl1kniRUci5AyH-pzppLxoXqqNsDZVztvbNF3rjyB90-B5r3teeQH2tnf0ksdKI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Nastasi, Kevin M.</creator><creator>Black, Jonathan T.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190501</creationdate><title>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</title><author>Nastasi, Kevin M. ; Black, Jonathan T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Kalman filters</topic><topic>Markov chains</topic><topic>Satellite tracking</topic><topic>Sensors</topic><topic>Spacecraft tracking</topic><topic>Surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nastasi, Kevin M.</creatorcontrib><creatorcontrib>Black, Jonathan T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nastasi, Kevin M.</au><au>Black, Jonathan T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>42</volume><issue>5</issue><spage>1033</spage><epage>1048</epage><pages>1033-1048</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>As resident space object populations grow and satellite propulsion capabilities improve, it will become increasingly challenging for space-reliant nations to maintain space domain awareness using current human-in-the-loop methods. This work presents an adaptive approach to autonomous sensor network management for tracking multiple maneuvering and nonmaneuvering satellites with a diversely populated space object surveillance and identification network. The proposed method integrates a suboptimal partially observed Markov decision process (POMDP) with a static multiple-model adaptive unscented Kalman filter to task sensors and maintain viable orbit estimates for all targets. The POMDP uses largest Lyapunov exponent, Fisher information gain, and sensor transportability metrics to assess the reward for tasking a specific sensor to track a particular satellite. Like in real-world situations, the population of target satellites vastly outnumbers the available set of sensors. Without a robust and adaptable tasking algorithm, the sensor network would fail to track all targets. The strategy presented herein successfully tracks 203 nonmaneuvering and maneuvering spacecraft using only 24 ground- and space-based sensors. The results show that multiple-model adaptive estimation coupled with a multimetric, suboptimal POMDP can effectively task a diverse network of sensors to track multiple maneuvering spacecraft, while simultaneously monitoring a large number of nonmaneuvering objects. Presented as Paper 2018-0890 at the 2018 AIAA Information Systems-AIAA InfoTech@Aerospace, Kissimmee, FL, 8-12 January 2018</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G003743</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2019-05, Vol.42 (5), p.1033-1048 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_proquest_journals_2206445156 |
source | Alma/SFX Local Collection |
subjects | Adaptive filters Algorithms Kalman filters Markov chains Satellite tracking Sensors Spacecraft tracking Surveillance |
title | Adaptively Tracking Maneuvering Spacecraft with a Globally Distributed, Diversely Populated Surveillance Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptively%20Tracking%20Maneuvering%20Spacecraft%20with%20a%20Globally%20Distributed,%20Diversely%20Populated%20Surveillance%20Network&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Nastasi,%20Kevin%20M.&rft.date=2019-05-01&rft.volume=42&rft.issue=5&rft.spage=1033&rft.epage=1048&rft.pages=1033-1048&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G003743&rft_dat=%3Cproquest_cross%3E2159463458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c285t-6878978c83af540cbba60a43feb8d159e85255bd1596c11637b98e8f61a127bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2159463458&rft_id=info:pmid/&rfr_iscdi=true |