Loading…

Multi-Agent Tensor Fusion for Contextual Trajectory Prediction

Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stoch...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-07
Main Authors: Zhao, Tianyang, Xu, Yifei, Monfort, Mathew, Choi, Wongun, Baker, Chris, Zhao, Yibiao, Wang, Yizhou, Ying Nian Wu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhao, Tianyang
Xu, Yifei
Monfort, Mathew
Choi, Wongun
Baker, Chris
Zhao, Yibiao
Wang, Yizhou
Ying Nian Wu
description Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2206812380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206812380</sourcerecordid><originalsourceid>FETCH-proquest_journals_22068123803</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAOpC-2ZhKkWFwEh-6ltK_SUBJNXkD_3gx-gNMd3K1YBkoVQh8ANiwPwUgpoTpCWaqMnW5xoVmcH2iJt2iD87yJYXaWT0lrZwnfFPuFt743OJDzH373OM4DpWnH1lO_BMx_3LJ9c2nrq3h694oYqDMueptSByArXYDSUv13fQHLjTh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206812380</pqid></control><display><type>article</type><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><source>Publicly Available Content Database</source><creator>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</creator><creatorcontrib>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</creatorcontrib><description>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraint modelling ; Human behavior ; Mathematical analysis ; Model accuracy ; Multiagent systems ; Social factors ; Tensors ; Trajectories</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2206812380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Zhao, Tianyang</creatorcontrib><creatorcontrib>Xu, Yifei</creatorcontrib><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Choi, Wongun</creatorcontrib><creatorcontrib>Baker, Chris</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Ying Nian Wu</creatorcontrib><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><title>arXiv.org</title><description>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</description><subject>Constraint modelling</subject><subject>Human behavior</subject><subject>Mathematical analysis</subject><subject>Model accuracy</subject><subject>Multiagent systems</subject><subject>Social factors</subject><subject>Tensors</subject><subject>Trajectories</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAOpC-2ZhKkWFwEh-6ltK_SUBJNXkD_3gx-gNMd3K1YBkoVQh8ANiwPwUgpoTpCWaqMnW5xoVmcH2iJt2iD87yJYXaWT0lrZwnfFPuFt743OJDzH373OM4DpWnH1lO_BMx_3LJ9c2nrq3h694oYqDMueptSByArXYDSUv13fQHLjTh_</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Zhao, Tianyang</creator><creator>Xu, Yifei</creator><creator>Monfort, Mathew</creator><creator>Choi, Wongun</creator><creator>Baker, Chris</creator><creator>Zhao, Yibiao</creator><creator>Wang, Yizhou</creator><creator>Ying Nian Wu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190728</creationdate><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><author>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22068123803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constraint modelling</topic><topic>Human behavior</topic><topic>Mathematical analysis</topic><topic>Model accuracy</topic><topic>Multiagent systems</topic><topic>Social factors</topic><topic>Tensors</topic><topic>Trajectories</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianyang</creatorcontrib><creatorcontrib>Xu, Yifei</creatorcontrib><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Choi, Wongun</creatorcontrib><creatorcontrib>Baker, Chris</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Ying Nian Wu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianyang</au><au>Xu, Yifei</au><au>Monfort, Mathew</au><au>Choi, Wongun</au><au>Baker, Chris</au><au>Zhao, Yibiao</au><au>Wang, Yizhou</au><au>Ying Nian Wu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</atitle><jtitle>arXiv.org</jtitle><date>2019-07-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2206812380
source Publicly Available Content Database
subjects Constraint modelling
Human behavior
Mathematical analysis
Model accuracy
Multiagent systems
Social factors
Tensors
Trajectories
title Multi-Agent Tensor Fusion for Contextual Trajectory Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Agent%20Tensor%20Fusion%20for%20Contextual%20Trajectory%20Prediction&rft.jtitle=arXiv.org&rft.au=Zhao,%20Tianyang&rft.date=2019-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2206812380%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22068123803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2206812380&rft_id=info:pmid/&rfr_iscdi=true