Loading…
Multi-Agent Tensor Fusion for Contextual Trajectory Prediction
Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stoch...
Saved in:
Published in: | arXiv.org 2019-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhao, Tianyang Xu, Yifei Monfort, Mathew Choi, Wongun Baker, Chris Zhao, Yibiao Wang, Yizhou Ying Nian Wu |
description | Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2206812380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2206812380</sourcerecordid><originalsourceid>FETCH-proquest_journals_22068123803</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAOpC-2ZhKkWFwEh-6ltK_SUBJNXkD_3gx-gNMd3K1YBkoVQh8ANiwPwUgpoTpCWaqMnW5xoVmcH2iJt2iD87yJYXaWT0lrZwnfFPuFt743OJDzH373OM4DpWnH1lO_BMx_3LJ9c2nrq3h694oYqDMueptSByArXYDSUv13fQHLjTh_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206812380</pqid></control><display><type>article</type><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><source>Publicly Available Content Database</source><creator>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</creator><creatorcontrib>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</creatorcontrib><description>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Constraint modelling ; Human behavior ; Mathematical analysis ; Model accuracy ; Multiagent systems ; Social factors ; Tensors ; Trajectories</subject><ispartof>arXiv.org, 2019-07</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2206812380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Zhao, Tianyang</creatorcontrib><creatorcontrib>Xu, Yifei</creatorcontrib><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Choi, Wongun</creatorcontrib><creatorcontrib>Baker, Chris</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Ying Nian Wu</creatorcontrib><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><title>arXiv.org</title><description>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</description><subject>Constraint modelling</subject><subject>Human behavior</subject><subject>Mathematical analysis</subject><subject>Model accuracy</subject><subject>Multiagent systems</subject><subject>Social factors</subject><subject>Tensors</subject><subject>Trajectories</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAOpC-2ZhKkWFwEh-6ltK_SUBJNXkD_3gx-gNMd3K1YBkoVQh8ANiwPwUgpoTpCWaqMnW5xoVmcH2iJt2iD87yJYXaWT0lrZwnfFPuFt743OJDzH373OM4DpWnH1lO_BMx_3LJ9c2nrq3h694oYqDMueptSByArXYDSUv13fQHLjTh_</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Zhao, Tianyang</creator><creator>Xu, Yifei</creator><creator>Monfort, Mathew</creator><creator>Choi, Wongun</creator><creator>Baker, Chris</creator><creator>Zhao, Yibiao</creator><creator>Wang, Yizhou</creator><creator>Ying Nian Wu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190728</creationdate><title>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</title><author>Zhao, Tianyang ; Xu, Yifei ; Monfort, Mathew ; Choi, Wongun ; Baker, Chris ; Zhao, Yibiao ; Wang, Yizhou ; Ying Nian Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22068123803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constraint modelling</topic><topic>Human behavior</topic><topic>Mathematical analysis</topic><topic>Model accuracy</topic><topic>Multiagent systems</topic><topic>Social factors</topic><topic>Tensors</topic><topic>Trajectories</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tianyang</creatorcontrib><creatorcontrib>Xu, Yifei</creatorcontrib><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Choi, Wongun</creatorcontrib><creatorcontrib>Baker, Chris</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wang, Yizhou</creatorcontrib><creatorcontrib>Ying Nian Wu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tianyang</au><au>Xu, Yifei</au><au>Monfort, Mathew</au><au>Choi, Wongun</au><au>Baker, Chris</au><au>Zhao, Yibiao</au><au>Wang, Yizhou</au><au>Ying Nian Wu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Agent Tensor Fusion for Contextual Trajectory Prediction</atitle><jtitle>arXiv.org</jtitle><date>2019-07-28</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Accurate prediction of others' trajectories is essential for autonomous driving. Trajectory prediction is challenging because it requires reasoning about agents' past movements, social interactions among varying numbers and kinds of agents, constraints from the scene context, and the stochasticity of human behavior. Our approach models these interactions and constraints jointly within a novel Multi-Agent Tensor Fusion (MATF) network. Specifically, the model encodes multiple agents' past trajectories and the scene context into a Multi-Agent Tensor, then applies convolutional fusion to capture multiagent interactions while retaining the spatial structure of agents and the scene context. The model decodes recurrently to multiple agents' future trajectories, using adversarial loss to learn stochastic predictions. Experiments on both highway driving and pedestrian crowd datasets show that the model achieves state-of-the-art prediction accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2206812380 |
source | Publicly Available Content Database |
subjects | Constraint modelling Human behavior Mathematical analysis Model accuracy Multiagent systems Social factors Tensors Trajectories |
title | Multi-Agent Tensor Fusion for Contextual Trajectory Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Agent%20Tensor%20Fusion%20for%20Contextual%20Trajectory%20Prediction&rft.jtitle=arXiv.org&rft.au=Zhao,%20Tianyang&rft.date=2019-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2206812380%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_22068123803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2206812380&rft_id=info:pmid/&rfr_iscdi=true |