Loading…
Strong pseudospin-lattice coupling in Sr3Ir2O7: Coherent phonon anomaly and negative thermal expansion
The similarities to cuprates make iridates an interesting potential platform for investigating superconductivity. Equally attractive are their puzzling complex intrinsic interactions. Here, we report an ultrafast optical spectroscopy investigation of a coherent phonon mode in Sr3Ir2O7, a bilayer Rud...
Saved in:
Published in: | Physical review. B 2019-03, Vol.99 (9), p.094307 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The similarities to cuprates make iridates an interesting potential platform for investigating superconductivity. Equally attractive are their puzzling complex intrinsic interactions. Here, we report an ultrafast optical spectroscopy investigation of a coherent phonon mode in Sr3Ir2O7, a bilayer Ruddlesden-Popper perovskite iridate. An anomaly in the A1g optical phonon (ν=4.4THz) is unambiguously observed below the Néel temperature (TN), which we attribute to pseudospin-lattice coupling (PLC). Significantly, we find that PLC is the dominant interaction at low temperature, and we directly measure the PLC coefficient to be λ=150±20cm−1, which is two orders of magnitude higher than that in manganites ( |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.99.094307 |