Loading…

Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study

By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-02, Vol.99 (6), p.064108, Article 064108
Main Authors: Unzueta, I., Sánchez-Alarcos, V., Recarte, V., Pérez-Landazábal, J. I., Zabala, N., García, J. A., Plazaola, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653
cites cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653
container_end_page
container_issue 6
container_start_page 064108
container_title Physical review. B
container_volume 99
creator Unzueta, I.
Sánchez-Alarcos, V.
Recarte, V.
Pérez-Landazábal, J. I.
Zabala, N.
García, J. A.
Plazaola, F.
description By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.
doi_str_mv 10.1103/PhysRevB.99.064108
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207136401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207136401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOa-gE8BXxTWeZOmSSP4oNPNwfyDzhdfSpomLGOms-mG_fZ2VH243MvlcA7nh9ApgREhEF--LJvwana3IylHwBmB9AD1KOMykpLLw_87gWM0CGEFAISDFCB7qJkVxtfOOq1qV3pcWqzwk4t2SiuvG1wYa3SNnd8_H32EP_B5O9d4qvAQv_khnvmLK3zjsfnemMp9tm5qjZUv8N1kgTdlcHVV-kh575Zu3YWEels0J-jIqnUwg9_dR--T-8X4IZo_T2fjm3mkqUjqSDBdqFzRVMRMpwAGGNUpscxK0DTXewLGckHjIhckIcxqViidxjbnQvIk7qOzzndTlV9bE-psVW4r30ZmlIIgMWdAWhXtVLoqQ6iMzTZtGVU1GYFsn5H9Uc6kzDrK8Q8I5m8W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207136401</pqid></control><display><type>article</type><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</creator><creatorcontrib>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</creatorcontrib><description>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.064108</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Approximation ; Density functional theory ; Heusler alloys ; Lower bounds ; Manganese ; Martensitic transformations ; Mathematical analysis ; Nickel ; Parameterization ; Theoretical density ; Vacancies</subject><ispartof>Physical review. B, 2019-02, Vol.99 (6), p.064108, Article 064108</ispartof><rights>Copyright American Physical Society Feb 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</citedby><cites>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Unzueta, I.</creatorcontrib><creatorcontrib>Sánchez-Alarcos, V.</creatorcontrib><creatorcontrib>Recarte, V.</creatorcontrib><creatorcontrib>Pérez-Landazábal, J. I.</creatorcontrib><creatorcontrib>Zabala, N.</creatorcontrib><creatorcontrib>García, J. A.</creatorcontrib><creatorcontrib>Plazaola, F.</creatorcontrib><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><title>Physical review. B</title><description>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</description><subject>Approximation</subject><subject>Density functional theory</subject><subject>Heusler alloys</subject><subject>Lower bounds</subject><subject>Manganese</subject><subject>Martensitic transformations</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Parameterization</subject><subject>Theoretical density</subject><subject>Vacancies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOa-gE8BXxTWeZOmSSP4oNPNwfyDzhdfSpomLGOms-mG_fZ2VH243MvlcA7nh9ApgREhEF--LJvwana3IylHwBmB9AD1KOMykpLLw_87gWM0CGEFAISDFCB7qJkVxtfOOq1qV3pcWqzwk4t2SiuvG1wYa3SNnd8_H32EP_B5O9d4qvAQv_khnvmLK3zjsfnemMp9tm5qjZUv8N1kgTdlcHVV-kh575Zu3YWEels0J-jIqnUwg9_dR--T-8X4IZo_T2fjm3mkqUjqSDBdqFzRVMRMpwAGGNUpscxK0DTXewLGckHjIhckIcxqViidxjbnQvIk7qOzzndTlV9bE-psVW4r30ZmlIIgMWdAWhXtVLoqQ6iMzTZtGVU1GYFsn5H9Uc6kzDrK8Q8I5m8W</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Unzueta, I.</creator><creator>Sánchez-Alarcos, V.</creator><creator>Recarte, V.</creator><creator>Pérez-Landazábal, J. I.</creator><creator>Zabala, N.</creator><creator>García, J. A.</creator><creator>Plazaola, F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190221</creationdate><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><author>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Density functional theory</topic><topic>Heusler alloys</topic><topic>Lower bounds</topic><topic>Manganese</topic><topic>Martensitic transformations</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Parameterization</topic><topic>Theoretical density</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unzueta, I.</creatorcontrib><creatorcontrib>Sánchez-Alarcos, V.</creatorcontrib><creatorcontrib>Recarte, V.</creatorcontrib><creatorcontrib>Pérez-Landazábal, J. I.</creatorcontrib><creatorcontrib>Zabala, N.</creatorcontrib><creatorcontrib>García, J. A.</creatorcontrib><creatorcontrib>Plazaola, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unzueta, I.</au><au>Sánchez-Alarcos, V.</au><au>Recarte, V.</au><au>Pérez-Landazábal, J. I.</au><au>Zabala, N.</au><au>García, J. A.</au><au>Plazaola, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</atitle><jtitle>Physical review. B</jtitle><date>2019-02-21</date><risdate>2019</risdate><volume>99</volume><issue>6</issue><spage>064108</spage><pages>064108-</pages><artnum>064108</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.064108</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-02, Vol.99 (6), p.064108, Article 064108
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2207136401
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Approximation
Density functional theory
Heusler alloys
Lower bounds
Manganese
Martensitic transformations
Mathematical analysis
Nickel
Parameterization
Theoretical density
Vacancies
title Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Ni-vacancy%20defect%20in%20Ni-Mn-%20Z%20(%20Z%20=%20Ga%20,%20Sn,%20In):%20An%20experimental%20and%20DFT%20positron-annihilation%20study&rft.jtitle=Physical%20review.%20B&rft.au=Unzueta,%20I.&rft.date=2019-02-21&rft.volume=99&rft.issue=6&rft.spage=064108&rft.pages=064108-&rft.artnum=064108&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.064108&rft_dat=%3Cproquest_cross%3E2207136401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207136401&rft_id=info:pmid/&rfr_iscdi=true