Loading…
Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study
By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to...
Saved in:
Published in: | Physical review. B 2019-02, Vol.99 (6), p.064108, Article 064108 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653 |
---|---|
cites | cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653 |
container_end_page | |
container_issue | 6 |
container_start_page | 064108 |
container_title | Physical review. B |
container_volume | 99 |
creator | Unzueta, I. Sánchez-Alarcos, V. Recarte, V. Pérez-Landazábal, J. I. Zabala, N. García, J. A. Plazaola, F. |
description | By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems. |
doi_str_mv | 10.1103/PhysRevB.99.064108 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2207136401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207136401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOa-gE8BXxTWeZOmSSP4oNPNwfyDzhdfSpomLGOms-mG_fZ2VH243MvlcA7nh9ApgREhEF--LJvwana3IylHwBmB9AD1KOMykpLLw_87gWM0CGEFAISDFCB7qJkVxtfOOq1qV3pcWqzwk4t2SiuvG1wYa3SNnd8_H32EP_B5O9d4qvAQv_khnvmLK3zjsfnemMp9tm5qjZUv8N1kgTdlcHVV-kh575Zu3YWEels0J-jIqnUwg9_dR--T-8X4IZo_T2fjm3mkqUjqSDBdqFzRVMRMpwAGGNUpscxK0DTXewLGckHjIhckIcxqViidxjbnQvIk7qOzzndTlV9bE-psVW4r30ZmlIIgMWdAWhXtVLoqQ6iMzTZtGVU1GYFsn5H9Uc6kzDrK8Q8I5m8W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207136401</pqid></control><display><type>article</type><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</creator><creatorcontrib>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</creatorcontrib><description>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.99.064108</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Approximation ; Density functional theory ; Heusler alloys ; Lower bounds ; Manganese ; Martensitic transformations ; Mathematical analysis ; Nickel ; Parameterization ; Theoretical density ; Vacancies</subject><ispartof>Physical review. B, 2019-02, Vol.99 (6), p.064108, Article 064108</ispartof><rights>Copyright American Physical Society Feb 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</citedby><cites>FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Unzueta, I.</creatorcontrib><creatorcontrib>Sánchez-Alarcos, V.</creatorcontrib><creatorcontrib>Recarte, V.</creatorcontrib><creatorcontrib>Pérez-Landazábal, J. I.</creatorcontrib><creatorcontrib>Zabala, N.</creatorcontrib><creatorcontrib>García, J. A.</creatorcontrib><creatorcontrib>Plazaola, F.</creatorcontrib><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><title>Physical review. B</title><description>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</description><subject>Approximation</subject><subject>Density functional theory</subject><subject>Heusler alloys</subject><subject>Lower bounds</subject><subject>Manganese</subject><subject>Martensitic transformations</subject><subject>Mathematical analysis</subject><subject>Nickel</subject><subject>Parameterization</subject><subject>Theoretical density</subject><subject>Vacancies</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOa-gE8BXxTWeZOmSSP4oNPNwfyDzhdfSpomLGOms-mG_fZ2VH243MvlcA7nh9ApgREhEF--LJvwana3IylHwBmB9AD1KOMykpLLw_87gWM0CGEFAISDFCB7qJkVxtfOOq1qV3pcWqzwk4t2SiuvG1wYa3SNnd8_H32EP_B5O9d4qvAQv_khnvmLK3zjsfnemMp9tm5qjZUv8N1kgTdlcHVV-kh575Zu3YWEels0J-jIqnUwg9_dR--T-8X4IZo_T2fjm3mkqUjqSDBdqFzRVMRMpwAGGNUpscxK0DTXewLGckHjIhckIcxqViidxjbnQvIk7qOzzndTlV9bE-psVW4r30ZmlIIgMWdAWhXtVLoqQ6iMzTZtGVU1GYFsn5H9Uc6kzDrK8Q8I5m8W</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Unzueta, I.</creator><creator>Sánchez-Alarcos, V.</creator><creator>Recarte, V.</creator><creator>Pérez-Landazábal, J. I.</creator><creator>Zabala, N.</creator><creator>García, J. A.</creator><creator>Plazaola, F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190221</creationdate><title>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</title><author>Unzueta, I. ; Sánchez-Alarcos, V. ; Recarte, V. ; Pérez-Landazábal, J. I. ; Zabala, N. ; García, J. A. ; Plazaola, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Density functional theory</topic><topic>Heusler alloys</topic><topic>Lower bounds</topic><topic>Manganese</topic><topic>Martensitic transformations</topic><topic>Mathematical analysis</topic><topic>Nickel</topic><topic>Parameterization</topic><topic>Theoretical density</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unzueta, I.</creatorcontrib><creatorcontrib>Sánchez-Alarcos, V.</creatorcontrib><creatorcontrib>Recarte, V.</creatorcontrib><creatorcontrib>Pérez-Landazábal, J. I.</creatorcontrib><creatorcontrib>Zabala, N.</creatorcontrib><creatorcontrib>García, J. A.</creatorcontrib><creatorcontrib>Plazaola, F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unzueta, I.</au><au>Sánchez-Alarcos, V.</au><au>Recarte, V.</au><au>Pérez-Landazábal, J. I.</au><au>Zabala, N.</au><au>García, J. A.</au><au>Plazaola, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study</atitle><jtitle>Physical review. B</jtitle><date>2019-02-21</date><risdate>2019</risdate><volume>99</volume><issue>6</issue><spage>064108</spage><pages>064108-</pages><artnum>064108</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>By means of experimental positron-annihilation-lifetime measurements and theoretical density functional theory (DFT) positron-lifetime calculations, vacancy-type defects in Ni50Mn50−xSnx (x=25,20,15,13,10) and Ni50Mn50−xInx (x=25,20,16,13) systems are systematically studied. The study is extended to Ni-Mn-Ga systems as well. Experimental results are complemented with electron-positron DFT calculations carried out within the local density approximation and generalized gradient approximation, where five different parametrizations accounting for the γ(r) enhancement factor are analyzed. Theoretical results indicate that the Boronski-Nieminen parametrization of γ(r) is the one that best predicts the experimental results, which ultimately enables us to identify VNi as the vacancy present in the studied samples. The characteristic positron lifetime related to VNi ranges between 181 and 191 ps in Ni-Mn-Sn/In systems. Positron-annihilation-lifetime spectroscopy results in these two systems delimit the lower bound of the achievable vacancy concentration, which is much larger compared with the reported values in Ni-Mn-Ga systems. The present work, along with setting the basis for positron simulations in Ni-Mn based Heusler alloys, delimits the effect that the variation of vacancies has in the martensitic transformation in Ni-Mn-Sn systems.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.064108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-02, Vol.99 (6), p.064108, Article 064108 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_journals_2207136401 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Approximation Density functional theory Heusler alloys Lower bounds Manganese Martensitic transformations Mathematical analysis Nickel Parameterization Theoretical density Vacancies |
title | Identification of a Ni-vacancy defect in Ni-Mn- Z ( Z = Ga , Sn, In): An experimental and DFT positron-annihilation study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Ni-vacancy%20defect%20in%20Ni-Mn-%20Z%20(%20Z%20=%20Ga%20,%20Sn,%20In):%20An%20experimental%20and%20DFT%20positron-annihilation%20study&rft.jtitle=Physical%20review.%20B&rft.au=Unzueta,%20I.&rft.date=2019-02-21&rft.volume=99&rft.issue=6&rft.spage=064108&rft.pages=064108-&rft.artnum=064108&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.064108&rft_dat=%3Cproquest_cross%3E2207136401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-74cdaba28734c800e042c81f4f90c2bc1103ef6723db71514fc4dac83fb679653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2207136401&rft_id=info:pmid/&rfr_iscdi=true |