Loading…
Superfluid-insulator transition and the BEC-BCS crossover in the Rashba moat band
We study the superconducting transition in a two-dimensional electron gas with strong Rashba spin-orbit coupling. We assume low electron density, such that only the majority spin band participates in the transition. We show that the superconducting transition follows either the Bose-Einstein condens...
Saved in:
Published in: | Physical review. B 2019-03, Vol.99 (10), p.104505, Article 104505 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the superconducting transition in a two-dimensional electron gas with strong Rashba spin-orbit coupling. We assume low electron density, such that only the majority spin band participates in the transition. We show that the superconducting transition follows either the Bose-Einstein condensation (BEC) or the Bardeen-Cooper-Schrieffer (BCS) scenarios, depending on the position of the chemical potential with respect to the bottom of the majority band, and the strength of the Coulomb repulsion between electrons. Hence, the BEC-BCS crossover in this system can be driven either by the change in the chemical potential, or the distance to a gate. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.99.104505 |