Loading…
Enhanced graphite recovery by optimising flotation energy input
This experimental work on graphite flotation investigated the effect of energy input on flotation performance of three particle size fractions. Results obtained from flotation tests indicated that the required energy input rate increases with the decreasing particle size. The maximum graphite recove...
Saved in:
Published in: | Separation science and technology 2019-03, Vol.54 (5), p.766-774 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This experimental work on graphite flotation investigated the effect of energy input on flotation performance of three particle size fractions. Results obtained from flotation tests indicated that the required energy input rate increases with the decreasing particle size. The maximum graphite recovery of coarse particles was obtained at 121 J/min, while the optimum recovery of fine particles was obtained at 330 J/min. However, the demand of energy for each coarse particle is slightly higher than that of the fine particle in collision process. Numerical analysis showed that the streamlines have little effect on the trajectories of coarse particles, which can significantly contribute to a higher recovery of coarse particles in comparison with fine particles at the same energy input rate. |
---|---|
ISSN: | 0149-6395 1520-5754 |
DOI: | 10.1080/01496395.2018.1518333 |